Cisco IOS

This topic provides a route-based configuration for a Cisco IOS device. The configuration was validated using a Cisco 2921 running IOS version 15.4(3)M3.

Important

Oracle provides configuration instructions for a tested set of vendors and devices. Use the correct configuration for your vendor and software version.

If the device or software version that Oracle used to verify the configuration does not exactly match your device or software, you might still be able to create the necessary configuration on your device. Consult your vendor's documentation and make any necessary adjustments.

If your device is for a vendor not in the list of verified vendors and devices, or if you're already familiar with configuring your device for IPSec, see the list of supported IPSec parameters and consult your vendor's documentation for assistance.

Oracle Cloud Infrastructure offersSite-to-Site VPN, a secure IPSec connection between your on-premises network and a virtual cloud network (VCN).

The following diagram shows a basic IPSec connection to Oracle Cloud Infrastructure with redundant tunnels. IP addresses used in this diagram are for example purposes only.

This image summarizes the general layout of your on-premises network, Site-to-Site VPN IPSec tunnels, and VCN.

Best Practices

This section covers general best practices and considerations for using Site-to-Site VPN.

Configure All Tunnels for Every IPSec Connection

Oracle deploys two IPSec headends for each of your connections to provide high availability for your mission-critical workloads. On the Oracle side, these two headends are on different routers for redundancy purposes. Oracle recommends configuring all available tunnels for maximum redundancy. This is a key part of the "Design for Failure" philosophy.

Have Redundant CPEs in Your On-Premises Network Locations

Each of your sites that connects with IPSec to Oracle Cloud Infrastructure should have redundant edge devices (also known as customer-premises equipment (CPE)). You add each CPE to the Oracle Console and create a separate IPSec connection between your dynamic routing gateway (DRG)  and each CPE. For each IPSec connection, Oracle provisions two tunnels on geographically redundant IPSec headends. For more information, see the Connectivity redundancy guide (PDF).

Routing Protocol Considerations

When you create a Site-to-Site VPN IPSec connection, it has two redundant IPSec tunnels. Oracle encourages you to configure your CPE to use both tunnels (if your CPE supports it). In the past, Oracle created IPSec connections that had up to four IPSec tunnels.

The following three routing types are available, and you choose the routing type separately for each tunnel in the Site-to-Site VPN:

  • BGP dynamic routing: The available routes are learned dynamically through BGP. The DRG dynamically learns the routes from your on-premises network. On the Oracle side, the DRG advertises the VCN's subnets.
  • Static routing: When you set up the IPSec connection to the DRG, you specify the particular routes to your on-premises network that you want the VCN to know about. You also must configure your CPE device with static routes to the VCN's subnets. These routes are not learned dynamically.
  • Policy-based routing: When you set up the IPSec connection to the DRG, you specify the particular routes to your on-premises network that you want the VCN to know about. You also must configure your CPE device with static routes to the VCN's subnets. These routes are not learned dynamically.

For more information about routing with Site-to-Site VPN, including Oracle recommendations on how to manipulate the BGP best path selection algorithm, see Routing for Site-to-Site VPN.

Other Important CPE Configurations

Ensure that access lists on your CPE are configured correctly to not block necessary traffic from or to Oracle Cloud Infrastructure.

If you have multiple tunnels up simultaneously, you might experience asymmetric routing. To allow for asymmetric routing, ensure that your CPE is configured to handle traffic coming from your VCN on any of the tunnels. For example, you need to disable ICMP inspection, configure TCP state bypass . For more details about the appropriate configuration, contact your CPE vendor's support. To configure routing to be symmetric, refer to Routing for Site-to-Site VPN.

Caveats and Limitations

This section covers general important characteristics and limitations of Site-to-Site VPN to be aware of. See Service Limits for a list of applicable limits and instructions for requesting a limit increase.

Asymmetric Routing

Oracle uses asymmetric routing across the multiple tunnels that make up the IPSec connection. Configure your firewalls accordingly. Otherwise, ping tests or application traffic across the connection don't work reliably.

When you use multiple tunnels to Oracle Cloud Infrastructure, Oracle recommends that you configure your routing to deterministically route traffic through the preferred tunnel. If you want to use one IPSec tunnel as primary and another as backup, configure more-specific routes for the primary tunnel (BGP) and less-specific routes (summary or default route) for the backup tunnel (BGP/static). Otherwise, if you advertise the same route (for example, a default route) through all tunnels, return traffic from your VCN to your on-premises network routes to any of the available tunnels. This is because Oracle uses asymmetric routing.

For specific Oracle routing recommendations about how to force symmetric routing, see Routing for Site-to-Site VPN.

Route-Based or Policy-Based Site-to-Site VPN

The IPSec protocol uses Security Associations (SAs) to determine how to encrypt packets. Within each SA, you define encryption domains to map a packet's source and destination IP address and protocol type to an entry in the SA database to define how to encrypt or decrypt a packet.

Note

Other vendors or industry documentation might use the term proxy ID, security parameter index (SPI), or traffic selector when referring to SAs or encryption domains.

There are two general methods for implementing IPSec tunnels:

  • Route-based tunnels: Also called next-hop-based tunnels. A route table lookup is performed on a packet's destination IP address. If that route's egress interface is an IPSec tunnel, the packet is encrypted and sent to the other end of the tunnel.
  • Policy-based tunnels: The packet's source and destination IP address and protocol are matched against a list of policy statements. If a match is found, the packet is encrypted based on the rules in that policy statement.

The Oracle Site-to-Site VPN headends use route-based tunnels but can work with policy-based tunnels with some caveats listed in the following sections.

Encryption domain for route-based tunnels

If your CPE supports route-based tunnels, use that method to configure the tunnel. It's the simplest configuration with the most interoperability with the Oracle VPN headend.

Route-based IPSec uses an encryption domain with the following values:

  • Source IP address: Any (0.0.0.0/0)
  • Destination IP address: Any (0.0.0.0/0)
  • Protocol: IPv4

If you need to be more specific, you can use a single summary route for your encryption domain values instead of a default route.

Encryption domain for policy-based tunnels

When you use policy-based tunnels, every policy entry (a CIDR block on one side of the IPSec connection) that you define generates an IPSec security association (SA) with every eligible entry on the other end of the tunnel. This pair is referred to as an encryption domain.

In this diagram, the Oracle DRG end of the IPSec tunnel has policy entries for three IPv4 CIDR blocks and one IPv6 CIDR block. The on-premises CPE end of the tunnel has policy entries two IPv4 CIDR blocks and two IPv6 CIDR blocks. Each entry generates an encryption domain with all possible entries on the other end of the tunnel. Both sides of an SA pair must use the same version of IP. The result is a total of eight encryption domains.

Diagram showing multiple encryption domains and how to determine their number.
Important

If the CPE only supports policy-based tunnels, be aware of the following restrictions.

  • Site-to-Site VPN supports multiple encryption domains, but has an upper limit of 50 encryption domains.
  • If you had a situation similar to the prior example and only configured three of the six possible IPv4 encryption domains on the CPE side, the link would be listed in a "Partial UP" state because all possible encryption domains are always created on the DRG side.
  • Depending on when a tunnel was created you might not be able to edit an existing tunnel to use policy-based routing and might need to replace the tunnel with a new IPSec tunnel.
  • The CIDR blocks used on the Oracle DRG end of the tunnel can't overlap the CIDR blocks used on the on-premises CPE end of the tunnel.
  • An encryption domain must always be between two CIDR blocks of the same IP version.

If Your CPE Is Behind a NAT Device

In general, the CPE IKE identifier configured on your end of the connection must match the CPE IKE identifier that Oracle is using. By default, Oracle uses the CPE's public IP address, which you provide when you create the CPE object in the Oracle Console. However, if your CPE is behind a NAT device, the CPE IKE identifier configured on your end might be the CPE's private IP address, as show in the following diagram.

This image shows the CPE behind a NAT device, the public and private IP addresses, and the CPE IKE identifier.
Note

Some CPE platforms do not allow you to change the local IKE identifier. If you cannot, you must change the remote IKE ID in the Oracle Console to match your CPE's local IKE ID. You can provide the value either when you set up the IPSec connection, or later, by editing the IPSec connection. Oracle expects the value to be either an IP address or a fully qualified domain name (FQDN) such as cpe.example.com. For instructions, see Changing the CPE IKE Identifier That Oracle Uses.

CPE Configuration

Important

The configuration instructions in this section are provided by Oracle Cloud Infrastructure for your CPE. If you need support or further assistance, contact your CPE vendor's support directly.

The following figure shows the basic layout of the IPSec connection.

This image summarizes the general layout of the IPSec connection and tunnels.

The configuration template was validated using a Cisco 2921 running IOS version 15.4(3)M3. The template provides information for each tunnel that you must configure. Oracle recommends setting up all configured tunnels for maximum redundancy.

The configuration template refers to these items that you must provide:

  • CPE public IP address: The internet-routable IP address that is assigned to the external interface on the CPE. You or your Oracle administrator provides this value to Oracle when creating the CPE object in the Oracle Console.
  • Inside tunnel interface (required if using BGP): The IP addresses for the CPE and Oracle ends of the inside tunnel interface. You provide these values when creating the IPSec connection in the Oracle Console.
  • BGP ASN (required if using BGP): Your BGP ASN.

In addition, you must:

  • Configure internal routing that routes traffic between the CPE and your local network.
  • Ensure that you permit traffic between your CPE and your Oracle VCN.
  • Identify the IPSec profile used (the following configuration template references this group policy as oracle-vpn).
  • Identify the transform set used for your crypto map (the following configuration template references this transform set as oracle-vpn-transform).
Important

This following configuration template from Oracle Cloud Infrastructure is a starting point for what you need to apply to your CPE. Some of the parameters referenced in the template must be unique on the CPE, and the uniqueness can only be determined by accessing the CPE. Ensure the parameters are valid on your CPE and do not overwrite any previously configured values. In particular, ensure these values are unique:

  • Policy names or numbers
  • Interface names
  • Keyrings

  • Access list numbers (if applicable)

Oracle supports Internet Key Exchange version 1 (IKEv1) and version 2 (IKEv2). If you configure the IPSec connection in the Console to use IKEv2, you must configure your CPE to use only IKEv2 and related IKEv2 encryption parameters that your CPE supports. For a list of parameters that Oracle supports for IKEv1 or IKEv2, see Supported IPSec Parameters.

There's a separate configuration template for IKEv1 versus IKEv2.

IKEv1 Configuration Template

View the IKEv1 configuration template in full screen for easier reading.

!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! IKEv1 Configuration Template
! The configuration consists of two IPSec tunnels. Oracle highly recommends that you configure both tunnels for maximum redundancy.
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! The configuration template involves setting up the following:
! Keyring (Pre-Shared Key)
! Basic ISAKMP Options
! ISAKMP and IPSec Policy Configuration
! IPSec Peers
! Virtual Tunnel Interfaces
! IP Routing (BGP or Static)
! Update Any Internet Facing Access List to Allow IPSec and ISAKMP Packets
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! The configuration template has various parameters that you must define before applying the configuration.
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! PARAMETERS REFERENCED:
! ${OracleInsideTunnelIpAddress1} = Inside tunnel IP address of Oracle-side for the first tunnel. You provide these values when creating the IPSec connection in the Oracle Console.
! ${OracleInsideTunnelIpAddress2} = Inside tunnel IP address of Oracle-side for the second tunnel. You provide these values when creating the IPSec connection in the Oracle Console.
! ${bgpASN} = Your BGP ASN
! ${cpePublicIpAddress} = The public IP address for the CPE. This is the IP address of your outside interface
! ${oracleHeadend1} = Oracle public IP endpoint obtained from the Oracle Console.
! ${oracleHeadend2} = Oracle public IP endpoint obtained from the Oracle Console.
! ${sharedSecret1} = You provide when you set up the IPSec connection in the Oracle Console, or you can use the default Oracle-provided value.
! ${sharedSecret2} = You provide when you set up the IPSec connection in the Oracle Console, or you can use the default Oracle-provided value.
! ${outsideInterface} = The public interface or outside of tunnel interface which is configured with the CPE public IP address.
! ${vcnCidrNetwork} = VCN IP range
! ${vcnCidrNetmask} = Subnet mask for VCN
! ${onPremCidrNetwork} = On-premises IP range
! ${onPremCidrNetmask} = ON-premises subnet mask
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
 
! Keyring (Pre-Shared Key)
 
! For authentication during IKE a separate keyring is defined for each Oracle VPN Headend peer.
! Add the pre-shared key for each Oracle VPN headend under the corresponding keyring.
 
crypto keyring oracle-vpn-${oracleHeadend1} 
  local-address ${cpePublicIpAddress}
  pre-shared-key address ${oracleHeadend1} key ${sharedSecret1}
crypto keyring oracle-vpn-${oracleHeadend2} 
  local-address ${cpePublicIpAddress}
  pre-shared-key address ${oracleHeadend2} key ${sharedSecret2}
 
! Basic ISAKMP Options
 
! Optional IPSec settings are included here.
! All optional settings included are recommended by Oracle. Remove or comment out any unneeded commands prior to applying this configuration.
! WARNING: These settings are global and may impact other IPSec connections
 
! Enables fragmentation of IKE packets prior to encryption.
crypto isakmp fragmentation
 
! Enables Dead Peer Detection (DPD)
crypto isakmp keepalive 10 10
 
! The Router will clear the DF-bit in the IP header. Allows the packet to be fragmented and sen to the end host in Oracle Cloud Infrastructure for reassembly.
crypto ipsec df-bit clear
 
! Increases security association anti-replay window. An increased window size is helpful for scenarios where packets are regularly being dropped due to delays.
crypto ipsec security-association replay window-size 128
 
! ISAKMP and IPSec Policy Configuration
 
! An ISAKMP policy is created for Phase 1 which specifies to use a Pre-Shared Key, AES256, SHA384, Diffie-Hellman Group 5, and a Phase 1 lifetime of 28800 seconds (8 hours).
! If different parameters are required, modify this template before applying the configuration.
! WARNING: The ISAKMP group policy is created with a priority of 10. Make sure this doesn't conflict with any pre-existing configuration before applying.
 
crypto isakmp policy 10
 encr aes 256
 hash sha384
 authentication pre-share
 group 5
 lifetime 28800
 
! Create an IPSec transform set named 'oracle-vpn-transform' which defines a combination of IPSec (Phase 2) policy options. Specifically, AES256 for encryption and SHA1 for authentication. This is also where tunnel mode is set for IPSec.
! If different parameters are required, modify this template before applying the configuration.
 
crypto ipsec transform-set oracle-vpn-transform esp-aes 256 esp-sha-hmac
 mode tunnel
 
! A IPSec profile named 'oracle-vpn' is created.
! The previously created transform set is added to this policy along with settings for enabling PFS Group 5 and the security association lifetime to 3600 seconds (1 hour).
! If different parameters are required, modify this template before applying the configuration.
 
crypto ipsec profile oracle-vpn
 set pfs group5
 set security-association lifetime seconds 3600
 set transform-set oracle-vpn-transform
 
! IPSec Peers
 
! Two ISAKMP profiles are created for each Oracle VPN Headend.
! An ISAKMP profile is used as a repository for various Phase 1 commands tied to a specific IPSec peer. In this case, we match the previously created keyrings to an Oracle VPN headend.
 
crypto isakmp profile oracle-vpn-${oracleHeadend1}
   keyring oracle-vpn-${oracleHeadend1}
   self-identity address
   match identity address ${oracleHeadend1} 255.255.255.255
crypto isakmp profile oracle-vpn-${oracleHeadend2}
   keyring oracle-vpn-${oracleHeadend2}
   self-identity address
   match identity address ${oracleHeadend2} 255.255.255.255
 
! Virtual Tunnel Interfaces
 
! Each tunnel interface is a logical interface representing the local end of a VPN tunnel to a remote VPN peer. Each tunnel interface represents a single tunnel to a different Oracle VPN Headend. The IP address of each VPN headend is provided when you create your IPSec connection in Oracle Console.
! All traffic routed to a tunnel interface will be encrypted and sent across the tunnel towards Oracle Cloud Infrastructure.
! Each tunnel interface configuration also references the previously created IPSec profile 'oracle-vpn' for its IPSec parameters.
 
interface Tunnel${tunnelNumber1}
 ip address ${cpeInsideTunnelIpAddress1} ${cpeInsideTunnelNetmask1}
 tunnel source ${cpePublicIpAddress}
 tunnel mode ipsec ipv4
 tunnel destination ${oracleHeadend1}
 tunnel protection ipsec profile oracle-vpn
 
interface Tunnel${tunnelNumber2}
 ip address ${cpeInsideTunnelIpAddress2} ${cpeInsideTunnelNetmask2}
 tunnel source ${cpePublicIpAddress}
 tunnel mode ipsec ipv4
 tunnel destination ${oracleHeadend2}
 tunnel protection ipsec profile oracle-vpn
 
! IP Routing
! Pick either dynamic (BGP) or static routing. Uncomment the corresponding commands prior to applying configuration.
  
! Border Gateway Protocol (BGP) Configuration
! Uncomment below lines if you want to use BGP.
 
! router bgp ${bgpASN}
!  neighbor ${OracleInsideTunnelIpAddress1} remote-as 31898
!  neighbor ${OracleInsideTunnelIpAddress2} remote-as 31898
!  network ${onPremCidrNetwork} mask ${onPremCidrNetmask}
 
! Static Route Configuration
! Uncomment below lines if you want to use static routing.
! ip route ${vcnCidrNetwork} ${vcnCidrNetmask} Tunnel${tunnelNumber1}
! ip route ${vcnCidrNetwork} ${vcnCidrNetmask} Tunnel${tunnelNumber2}
 
! Update Any Internet Facing Access List to Allow IPSec and ISAKMP Packets
 
! You may need to allow IPSec and ISAKMP packets out your internet facing interface.
! Uncomment below lines to create a new ACL allowing IPSec and ISAKMP traffic and apply it to the outside interface.
 
! ip access-list extended INTERNET-INGRESS
!  permit udp host ${oracleHeadend1} host ${cpePublicIpAddress} eq isakmp
!  permit esp host ${oracleHeadend1} host ${cpePublicIpAddress}
!  permit udp host ${oracleHeadend2} host ${cpePublicIpAddress} eq isakmp
!  permit esp host ${oracleHeadend2} host ${cpePublicIpAddress}
!  permit icmp any any echo
!  permit icmp any any echo-reply
!  permit icmp any any unreachable
 
! interface ${outsideInterface}
!  ip address ${cpePublicIpAddress} $(netmask}
!  ip access-group INTERNET-INGRESS in
IKEv2 Configuration Template

View the IKEv2 configuration template in full screen for easier reading.

!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! IKEv2 Configuration Template
! The configuration consists of two IPSec tunnels. Oracle highly recommends that you configure both tunnels for maximum redundancy.
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! The configuration template involves setting up the following:
! Keyring (Pre-Shared Key)
! IKEv2 and IPSec Policy Configuration
! IPSec Peers
! Virtual Tunnel Interfaces
! IP Routing (BGP or Static)
! Update Any Internet Facing Access List to Allow IPSec and ISAKMP Packets
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! The configuration template has various parameters that you must define before applying the configuration.
!-------------------------------------------------------------------------------------------------------------------------------------------------------------
! PARAMETERS REFERENCED:
! ${OracleInsideTunnelIpAddress1} = Inside tunnel IP address of Oracle-side for the first tunnel. You provide these values when creating the IPSec connection in the Oracle Console.
! ${OracleInsideTunnelIpAddress2} = Inside tunnel IP address of Oracle-side for the second tunnel. You provide these values when creating the IPSec connection in the Oracle Console.
! ${bgpASN} = Your BGP ASN
! ${cpePublicIpAddress} = The public IP address for the CPE. This is the IP address of your outside interface
! ${oracleHeadend1} = Oracle public IP endpoint obtained from the Oracle Console.
! ${oracleHeadend2} = Oracle public IP endpoint obtained from the Oracle Console.
! ${sharedSecret1} = You provide when you set up the IPSec connection in the Oracle Console, or you can use the default Oracle-provided value.
! ${sharedSecret2} = You provide when you set up the IPSec connection in the Oracle Console, or you can use the default Oracle-provided value.
! ${outsideInterface} = The public interface or outside of tunnel interface which is configured with the CPE public IP address.
! ${vcnCidrNetwork} = VCN IP range
! ${vcnCidrNetmask} = Subnet mask for VCN
! ${onPremCidrNetwork} = On-premises IP range
! ${onPremCidrNetmask} = ON-premises subnet mask
!-------------------------------------------------------------------------------------------------------------------------------------------------------------

! Keyring (Pre-Shared Key)

! For authentication during IKE a separate keyring is defined for each Oracle VPN Headend peer.
! Add the pre-shared key for each Oracle VPN headend under the corresponding keyring.

crypto ikev2 keyring oracle-vpn-${oracleHeadend1}
peer oracle_vpn
 address ${oracleHeadend1}
 pre-shared-key local ${sharedSecret1}
 pre-shared-key remote ${sharedSecret1}

crypto ikev2 keyring oracle-vpn-${oracleHeadend2}
peer oracle_vpn
 address ${oracleHeadend2}
 pre-shared-key local ${sharedSecret2}
 pre-shared-key remote ${sharedSecret2}


! Optional IPSec settings are included here.
! All optional settings included are recommended by Oracle. Remove or comment out any unneeded commands prior to applying this configuration.
! WARNING: These settings are global and may impact other IPSec connections

! The Router will clear the DF-bit in the IP header. Allows the packet to be fragmented and sen to the end host in Oracle Cloud Infrastructure for reassembly.
crypto ipsec df-bit clear

! Increases security association anti-replay window. An increased window size is helpful for scenarios where packets are regularly being dropped due to delays.
crypto ipsec security-association replay window-size 128

! IKEv2 and IPSec Policy Configuration

! An IKEv2 proposal is created and specifies use of a Pre-Shared Key, AES256, SHA384, and Diffie-Hellman Group 5.
! If different parameters are required, modify this template before applying the configuration.

crypto ikev2 proposal oracle_v2_proposal
 encryption aes-cbc-256
 integrity sha384
 group 5

crypto ikev2 policy oracle_v2_policy
 proposal oracle_v2_proposal

! Create an IPSec transform set named 'oracle-vpn-transform' which defines a combination of IPSec (Phase 2) policy options. Specifically, AES256 for encryption and SHA1 for authentication. This is also where tunnel mode is set for IPSec.
! If different parameters are required, modify this template before applying the configuration.

crypto ipsec transform-set oracle-vpn-transform esp-aes 256 esp-sha-hmac
 mode tunnel

! An IPSec profile named 'oracle_v2_ipsec_profile_tunnel#' is created for each tunnel.
! The previously created transform set is added to this policy along with settings for enabling PFS Group 5 and the security association lifetime to 3600 seconds (1 hour).
! If different parameters are required, modify this template before applying the configuration.


crypto ipsec profile oracle_v2_ipsec_profile_tunnel1
 set ikev2-profile oracle_v2_profile_tunnel1
 set pfs group5
 set security-association lifetime seconds 3600
 set transform-set oracle-vpn-transform

crypto ipsec profile oracle_v2_ipsec_profile_tunnel2
 set ikev2-profile oracle_v2_profile_tunnel2
 set pfs group5
 set security-association lifetime seconds 3600
 set transform-set oracle-vpn-transform

! IPSec Peers

! Two IKEv2 profiles are created for each Oracle VPN Headend.

crypto ikev2 profile oracle-vpn-${oracleHeadend1}
 keyring oracle-vpn-${oracleHeadend1}
 identity local address ${cpePublicIpAddress}
 match identity remote address ${oracleHeadend1} 255.255.255.255
 authentication remote pre-share
 authentication local pre-share 

crypto ikev2 profile oracle-vpn-${oracleHeadend2}
 keyring oracle-vpn-${oracleHeadend2}
 identity local address ${cpePublicIpAddress}
 match identity remote address ${oracleHeadend2} 255.255.255.255
 authentication remote pre-share
 authentication local pre-share

! Virtual Tunnel Interfaces

! Each tunnel interface is a logical interface representing the local end of a VPN tunnel to a remote VPN peer. Each tunnel interface represents a single tunnel to a different Oracle VPN Headend. The IP address of each VPN headend is provided when you create your IPSec connection in Oracle Console.
! All traffic routed to a tunnel interface will be encrypted and sent across the tunnel towards Oracle Cloud Infrastructure.
! Each tunnel interface configuration also references the previously created IPSec profile 'oracle-vpn' for its IPSec parameters.

interface Tunnel${tunnelNumber1}
 ip address ${cpeInsideTunnelIpAddress1} ${cpeInsideTunnelNetmask1}
 tunnel source ${cpePublicIpAddress}
 tunnel mode ipsec ipv4
 tunnel destination ${oracleHeadend1}
 tunnel protection ipsec profile oracle_v2_ipsec_profile_tunnel1

interface Tunnel${tunnelNumber2}
 ip address ${cpeInsideTunnelIpAddress2} ${cpeInsideTunnelNetmask2}
 tunnel source ${cpePublicIpAddress}
 tunnel mode ipsec ipv4
 tunnel destination ${oracleHeadend2}
 tunnel protection ipsec profile oracle_v2_ipsec_profile_tunnel2

! IP Routing
! Pick either dynamic (BGP) or static routing. Uncomment the corresponding commands prior to applying configuration.

! Border Gateway Protocol (BGP) Configuration
! Uncomment below lines if you want to use BGP.

! router bgp ${bgpASN}
!  neighbor ${OracleInsideTunnelIpAddress1} remote-as 31898
!  neighbor ${OracleInsideTunnelIpAddress2} remote-as 31898
!  network ${onPremCidrNetwork} mask ${onPremCidrNetmask}

! Static Route Configuration
! Uncomment below lines if you want to use static routing.
! ip route ${vcnCidrNetwork} ${vcnCidrNetmask} Tunnel${tunnelNumber1}
! ip route ${vcnCidrNetwork} ${vcnCidrNetmask} Tunnel${tunnelNumber2}

! Update Any Internet Facing Access List to Allow IPSec and ISAKMP Packets

! You may need to allow IPSec and ISAKMP packets out your internet facing interface.
! Uncomment below lines to create a new ACL allowing IPSec and ISAKMP traffic and apply it to the outside interface.

! ip access-list extended INTERNET-INGRESS
!  permit udp host ${oracleHeadend1} host ${cpePublicIpAddress} eq isakmp
!  permit esp host ${oracleHeadend1} host ${cpePublicIpAddress}
!  permit udp host ${oracleHeadend2} host ${cpePublicIpAddress} eq isakmp
!  permit esp host ${oracleHeadend2} host ${cpePublicIpAddress}
!  permit icmp any any echo
!  permit icmp any any echo-reply
!  permit icmp any any unreachable

! interface ${outsideInterface}
!  ip address ${cpePublicIpAddress} $(netmask}
!  ip access-group INTERNET-INGRESS in

Verification

The following IOS commands are included for basic troubleshooting.

Use the following command to verify that ISAKMP security associations are being built between the two peers.

show crypto isakmp sa

Use the following command to verify the status of all your BGP connections or neighbors.

show ip bgp summary
show ip bgp neighbors

Use the following command to verify the route table.

show ip route

A Monitoring service is also available from Oracle Cloud Infrastructure to actively and passively monitor your cloud resources. For information about monitoring your Site-to-Site VPN, see Site-to-Site VPN Metrics.

If you have issues, see Site-to-Site VPN Troubleshooting.