mlm_insights.workflow package¶
Subpackages¶
Submodules¶
mlm_insights.workflow.component_config module¶
- class mlm_insights.workflow.component_config.FeatureConfig(feature_meta: mlm_insights.core.features.feature.FeatureMetadata, metrics: List[mlm_insights.core.metrics.metric_metadata.MetricMetadata])¶
Bases:
object
- feature_meta: FeatureMetadata¶
- metrics: List[MetricMetadata]¶
- class mlm_insights.workflow.component_config.ReaderConfig(klass: Type[mlm_insights.core.readers.interfaces.data_reader.DataReader], config: Dict[str, Any] = <factory>)¶
Bases:
object
- config: Dict[str, Any]¶
- klass: Type[DataReader]¶
- class mlm_insights.workflow.component_config.TransformerConfig(klass: Type[mlm_insights.core.transformers.interfaces.transformer.Transformer], config: Dict[str, Any] = <factory>)¶
Bases:
object
- config: Dict[str, Any]¶
- klass: Type[Transformer]¶
mlm_insights.workflow.insights_fugue_workflow module¶
- class mlm_insights.workflow.insights_fugue_workflow.InsightFugueWorkflow(workflow_request: WorkflowRequest)¶
Bases:
WorkflowBase
This class implements the Workflow using Fugue and constructs the DAG based on the fugue API. 1. All Fugue related APIs must only be used here and must not leak out 2. Ensure we do not store any state which should not be available on worker or cannot be available on worker. Doing so will lead to pickling errors. For eg: when using Spark as EE, do not pass or store SparkSession, SparkContex 3. Implement the DAG node based on the Fugue constructs like Creator, Transformer, etc
mlm_insights.workflow.workflow_request module¶
- class mlm_insights.workflow.workflow_request.WorkflowRequest(input_schema: Dict[str, FeatureType], transformers: List[Transformer], features: List[FeatureConfig], execution_engine: ExecutionEngine, dataset_metric: List[MetricMetadata] | None = None, reader: DataReader | None = None, data_frame: Any | None = None, reference_profile: Profile | None = None, tags: Tags | None = None, py_arrow_schema: Schema | None = None)¶
Bases:
object