Class: OCI::GenerativeAiInference::Models::LlamaLlmInferenceRequest
- Inherits:
-
LlmInferenceRequest
- Object
- LlmInferenceRequest
- OCI::GenerativeAiInference::Models::LlamaLlmInferenceRequest
- Defined in:
- lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb
Overview
Details for the text generation request for Llama models.
Constant Summary
Constants inherited from LlmInferenceRequest
OCI::GenerativeAiInference::Models::LlmInferenceRequest::RUNTIME_TYPE_ENUM
Instance Attribute Summary collapse
-
#frequency_penalty ⇒ Float
To reduce repetitiveness of generated tokens, this number penalizes new tokens based on their frequency in the generated text so far.
-
#is_echo ⇒ BOOLEAN
Whether or not to return the user prompt in the response.
-
#is_stream ⇒ BOOLEAN
Whether to stream back partial progress.
-
#log_probs ⇒ Integer
Includes the logarithmic probabilities for the most likely output tokens and the chosen tokens.
-
#max_tokens ⇒ Integer
The maximum number of tokens that can be generated per output sequence.
-
#num_generations ⇒ Integer
The number of of generated texts that will be returned.
-
#presence_penalty ⇒ Float
To reduce repetitiveness of generated tokens, this number penalizes new tokens based on whether they've appeared in the generated text so far.
-
#prompt ⇒ String
Represents the prompt to be completed.
-
#stop ⇒ Array<String>
List of strings that stop the generation if they are generated for the response text.
-
#temperature ⇒ Float
A number that sets the randomness of the generated output.
-
#top_k ⇒ Integer
An integer that sets up the model to use only the top k most likely tokens in the generated output.
-
#top_p ⇒ Float
If set to a probability 0.0 < p < 1.0, it ensures that only the most likely tokens, with total probability mass of p, are considered for generation at each step.
Attributes inherited from LlmInferenceRequest
Class Method Summary collapse
-
.attribute_map ⇒ Object
Attribute mapping from ruby-style variable name to JSON key.
-
.swagger_types ⇒ Object
Attribute type mapping.
Instance Method Summary collapse
-
#==(other) ⇒ Object
Checks equality by comparing each attribute.
-
#build_from_hash(attributes) ⇒ Object
Builds the object from hash.
- #eql?(other) ⇒ Boolean
-
#hash ⇒ Fixnum
Calculates hash code according to all attributes.
-
#initialize(attributes = {}) ⇒ LlamaLlmInferenceRequest
constructor
Initializes the object.
-
#to_hash ⇒ Hash
Returns the object in the form of hash.
-
#to_s ⇒ String
Returns the string representation of the object.
Methods inherited from LlmInferenceRequest
Constructor Details
#initialize(attributes = {}) ⇒ LlamaLlmInferenceRequest
Initializes the object
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 135 def initialize(attributes = {}) return unless attributes.is_a?(Hash) attributes['runtimeType'] = 'LLAMA' super(attributes) # convert string to symbol for hash key attributes = attributes.each_with_object({}) { |(k, v), h| h[k.to_sym] = v } self.prompt = attributes[:'prompt'] if attributes[:'prompt'] self.is_stream = attributes[:'isStream'] unless attributes[:'isStream'].nil? self.is_stream = false if is_stream.nil? && !attributes.key?(:'isStream') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :isStream and :is_stream' if attributes.key?(:'isStream') && attributes.key?(:'is_stream') self.is_stream = attributes[:'is_stream'] unless attributes[:'is_stream'].nil? self.is_stream = false if is_stream.nil? && !attributes.key?(:'isStream') && !attributes.key?(:'is_stream') # rubocop:disable Style/StringLiterals self.num_generations = attributes[:'numGenerations'] if attributes[:'numGenerations'] raise 'You cannot provide both :numGenerations and :num_generations' if attributes.key?(:'numGenerations') && attributes.key?(:'num_generations') self.num_generations = attributes[:'num_generations'] if attributes[:'num_generations'] self.is_echo = attributes[:'isEcho'] unless attributes[:'isEcho'].nil? self.is_echo = false if is_echo.nil? && !attributes.key?(:'isEcho') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :isEcho and :is_echo' if attributes.key?(:'isEcho') && attributes.key?(:'is_echo') self.is_echo = attributes[:'is_echo'] unless attributes[:'is_echo'].nil? self.is_echo = false if is_echo.nil? && !attributes.key?(:'isEcho') && !attributes.key?(:'is_echo') # rubocop:disable Style/StringLiterals self.top_k = attributes[:'topK'] if attributes[:'topK'] raise 'You cannot provide both :topK and :top_k' if attributes.key?(:'topK') && attributes.key?(:'top_k') self.top_k = attributes[:'top_k'] if attributes[:'top_k'] self.top_p = attributes[:'topP'] if attributes[:'topP'] self.top_p = 1.0 if top_p.nil? && !attributes.key?(:'topP') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :topP and :top_p' if attributes.key?(:'topP') && attributes.key?(:'top_p') self.top_p = attributes[:'top_p'] if attributes[:'top_p'] self.top_p = 1.0 if top_p.nil? && !attributes.key?(:'topP') && !attributes.key?(:'top_p') # rubocop:disable Style/StringLiterals self.temperature = attributes[:'temperature'] if attributes[:'temperature'] self.temperature = 1.0 if temperature.nil? && !attributes.key?(:'temperature') # rubocop:disable Style/StringLiterals self.frequency_penalty = attributes[:'frequencyPenalty'] if attributes[:'frequencyPenalty'] self.frequency_penalty = 0.0 if frequency_penalty.nil? && !attributes.key?(:'frequencyPenalty') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :frequencyPenalty and :frequency_penalty' if attributes.key?(:'frequencyPenalty') && attributes.key?(:'frequency_penalty') self.frequency_penalty = attributes[:'frequency_penalty'] if attributes[:'frequency_penalty'] self.frequency_penalty = 0.0 if frequency_penalty.nil? && !attributes.key?(:'frequencyPenalty') && !attributes.key?(:'frequency_penalty') # rubocop:disable Style/StringLiterals self.presence_penalty = attributes[:'presencePenalty'] if attributes[:'presencePenalty'] self.presence_penalty = 0.0 if presence_penalty.nil? && !attributes.key?(:'presencePenalty') # rubocop:disable Style/StringLiterals raise 'You cannot provide both :presencePenalty and :presence_penalty' if attributes.key?(:'presencePenalty') && attributes.key?(:'presence_penalty') self.presence_penalty = attributes[:'presence_penalty'] if attributes[:'presence_penalty'] self.presence_penalty = 0.0 if presence_penalty.nil? && !attributes.key?(:'presencePenalty') && !attributes.key?(:'presence_penalty') # rubocop:disable Style/StringLiterals self.stop = attributes[:'stop'] if attributes[:'stop'] self.log_probs = attributes[:'logProbs'] if attributes[:'logProbs'] raise 'You cannot provide both :logProbs and :log_probs' if attributes.key?(:'logProbs') && attributes.key?(:'log_probs') self.log_probs = attributes[:'log_probs'] if attributes[:'log_probs'] self.max_tokens = attributes[:'maxTokens'] if attributes[:'maxTokens'] raise 'You cannot provide both :maxTokens and :max_tokens' if attributes.key?(:'maxTokens') && attributes.key?(:'max_tokens') self.max_tokens = attributes[:'max_tokens'] if attributes[:'max_tokens'] end |
Instance Attribute Details
#frequency_penalty ⇒ Float
To reduce repetitiveness of generated tokens, this number penalizes new tokens based on their frequency in the generated text so far. Values > 0 encourage the model to use new tokens and values < 0 encourage the model to repeat tokens. Set to 0 to disable.
51 52 53 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 51 def frequency_penalty @frequency_penalty end |
#is_echo ⇒ BOOLEAN
Whether or not to return the user prompt in the response. Applies only to non-stream results.
26 27 28 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 26 def is_echo @is_echo end |
#is_stream ⇒ BOOLEAN
Whether to stream back partial progress. If set, tokens are sent as data-only server-sent events as they become available.
18 19 20 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 18 def is_stream @is_stream end |
#log_probs ⇒ Integer
Includes the logarithmic probabilities for the most likely output tokens and the chosen tokens.
For example, if the log probability is 5, the API returns a list of the 5 most likely tokens. The API returns the log probability of the sampled token, so there might be up to logprobs+1 elements in the response.
69 70 71 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 69 def log_probs @log_probs end |
#max_tokens ⇒ Integer
The maximum number of tokens that can be generated per output sequence. The token count of your prompt plus max_tokens cannot exceed the model's context length.
73 74 75 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 73 def max_tokens @max_tokens end |
#num_generations ⇒ Integer
The number of of generated texts that will be returned.
22 23 24 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 22 def num_generations @num_generations end |
#presence_penalty ⇒ Float
To reduce repetitiveness of generated tokens, this number penalizes new tokens based on whether they've appeared in the generated text so far. Values > 0 encourage the model to use new tokens and values < 0 encourage the model to repeat tokens.
Similar to frequency penalty, a penalty is applied to previously present tokens, except that this penalty is applied equally to all tokens that have already appeared, regardless of how many times they've appeared. Set to 0 to disable.
58 59 60 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 58 def presence_penalty @presence_penalty end |
#prompt ⇒ String
Represents the prompt to be completed. The trailing white spaces are trimmed before completion.
14 15 16 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 14 def prompt @prompt end |
#stop ⇒ Array<String>
List of strings that stop the generation if they are generated for the response text. The returned output will not contain the stop strings.
62 63 64 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 62 def stop @stop end |
#temperature ⇒ Float
A number that sets the randomness of the generated output. A lower temperature means a less random generations.
Use lower numbers for tasks with a correct answer such as question answering or summarizing. High temperatures can generate hallucinations or factually incorrect information. Start with temperatures lower than 1.0 and increase the temperature for more creative outputs, as you regenerate the prompts to refine the outputs.
47 48 49 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 47 def temperature @temperature end |
#top_k ⇒ Integer
An integer that sets up the model to use only the top k most likely tokens in the generated output. A higher k introduces more randomness into the output making the output text sound more natural. Default value is -1 which means to consider all tokens. Setting to 0 disables this method and considers all tokens.
If also using top p, then the model considers only the top tokens whose probabilities add up to p percent and ignores the rest of the k tokens. For example, if k is 20, but the probabilities of the top 10 add up to .75, then only the top 10 tokens are chosen.
33 34 35 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 33 def top_k @top_k end |
#top_p ⇒ Float
If set to a probability 0.0 < p < 1.0, it ensures that only the most likely tokens, with total probability mass of p, are considered for generation at each step.
To eliminate tokens with low likelihood, assign p a minimum percentage for the next token's likelihood. For example, when p is set to 0.75, the model eliminates the bottom 25 percent for the next token. Set to 1 to consider all tokens and set to 0 to disable. If both k and p are enabled, p acts after k.
40 41 42 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 40 def top_p @top_p end |
Class Method Details
.attribute_map ⇒ Object
Attribute mapping from ruby-style variable name to JSON key.
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 76 def self.attribute_map { # rubocop:disable Style/SymbolLiteral 'runtime_type': :'runtimeType', 'prompt': :'prompt', 'is_stream': :'isStream', 'num_generations': :'numGenerations', 'is_echo': :'isEcho', 'top_k': :'topK', 'top_p': :'topP', 'temperature': :'temperature', 'frequency_penalty': :'frequencyPenalty', 'presence_penalty': :'presencePenalty', 'stop': :'stop', 'log_probs': :'logProbs', 'max_tokens': :'maxTokens' # rubocop:enable Style/SymbolLiteral } end |
.swagger_types ⇒ Object
Attribute type mapping.
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 97 def self.swagger_types { # rubocop:disable Style/SymbolLiteral 'runtime_type': :'String', 'prompt': :'String', 'is_stream': :'BOOLEAN', 'num_generations': :'Integer', 'is_echo': :'BOOLEAN', 'top_k': :'Integer', 'top_p': :'Float', 'temperature': :'Float', 'frequency_penalty': :'Float', 'presence_penalty': :'Float', 'stop': :'Array<String>', 'log_probs': :'Integer', 'max_tokens': :'Integer' # rubocop:enable Style/SymbolLiteral } end |
Instance Method Details
#==(other) ⇒ Object
Checks equality by comparing each attribute.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 224 def ==(other) return true if equal?(other) self.class == other.class && runtime_type == other.runtime_type && prompt == other.prompt && is_stream == other.is_stream && num_generations == other.num_generations && is_echo == other.is_echo && top_k == other.top_k && top_p == other.top_p && temperature == other.temperature && frequency_penalty == other.frequency_penalty && presence_penalty == other.presence_penalty && stop == other.stop && log_probs == other.log_probs && max_tokens == other.max_tokens end |
#build_from_hash(attributes) ⇒ Object
Builds the object from hash
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 266 def build_from_hash(attributes) return nil unless attributes.is_a?(Hash) self.class.swagger_types.each_pair do |key, type| if type =~ /^Array<(.*)>/i # check to ensure the input is an array given that the the attribute # is documented as an array but the input is not if attributes[self.class.attribute_map[key]].is_a?(Array) public_method("#{key}=").call( attributes[self.class.attribute_map[key]] .map { |v| OCI::Internal::Util.convert_to_type(Regexp.last_match(1), v) } ) end elsif !attributes[self.class.attribute_map[key]].nil? public_method("#{key}=").call( OCI::Internal::Util.convert_to_type(type, attributes[self.class.attribute_map[key]]) ) end # or else data not found in attributes(hash), not an issue as the data can be optional end self end |
#eql?(other) ⇒ Boolean
246 247 248 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 246 def eql?(other) self == other end |
#hash ⇒ Fixnum
Calculates hash code according to all attributes.
255 256 257 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 255 def hash [runtime_type, prompt, is_stream, num_generations, is_echo, top_k, top_p, temperature, frequency_penalty, presence_penalty, stop, log_probs, max_tokens].hash end |
#to_hash ⇒ Hash
Returns the object in the form of hash
299 300 301 302 303 304 305 306 307 308 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 299 def to_hash hash = {} self.class.attribute_map.each_pair do |attr, param| value = public_method(attr).call next if value.nil? && !instance_variable_defined?("@#{attr}") hash[param] = _to_hash(value) end hash end |
#to_s ⇒ String
Returns the string representation of the object
293 294 295 |
# File 'lib/oci/generative_ai_inference/models/llama_llm_inference_request.rb', line 293 def to_s to_hash.to_s end |