Package | Description |
---|---|
com.oracle.bmc.ailanguage.model |
Modifier and Type | Method and Description |
---|---|
static NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.builder()
Create a new builder.
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.copy(NamedEntityRecognitionModelMetrics model) |
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.macroF1(Float macroF1)
F1-score, is a measure of a model’s accuracy on a dataset
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.macroPrecision(Float macroPrecision)
Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives)
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.macroRecall(Float macroRecall)
Measures the model’s ability to predict actual positive classes.
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.microF1(Float microF1)
F1-score, is a measure of a model’s accuracy on a dataset
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.microPrecision(Float microPrecision)
Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives)
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.microRecall(Float microRecall)
Measures the model’s ability to predict actual positive classes.
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.toBuilder() |
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.weightedF1(Float weightedF1)
F1-score, is a measure of a model’s accuracy on a dataset
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.weightedPrecision(Float weightedPrecision)
Precision refers to the number of true positives divided by the total number of positive
predictions (i.e., the number of true positives plus the number of false positives)
|
NamedEntityRecognitionModelMetrics.Builder |
NamedEntityRecognitionModelMetrics.Builder.weightedRecall(Float weightedRecall)
Measures the model’s ability to predict actual positive classes.
|
Copyright © 2016–2024. All rights reserved.