このページは機械翻訳したものです。

Select AIの使用例

OracleのSelect AIをサポートされている様々なAIプロバイダと統合して、自然言語プロンプトからSQLを生成、実行および説明したり、LLMとチャットしたりする方法をご紹介します。

例: AIアクションの選択

これらの例は、一般的な「AIの選択」アクションを示しています。

次の例は、SELECT AIで実行できるrunsql (デフォルト)、showsqlnarratechatexplainsqlなどのアクションを示しています。これらの例では、DBMS_CLOUD_AI.CREATE_PROFILE関数で設定されたAIプロバイダおよびプロファイル属性でshスキーマを使用します。

SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> select ai showsql how many customers exist;
 
RESPONSE
----------------------------------------------------
SELECT COUNT(*) AS total_customers
FROM SH.CUSTOMERS
 
 
SQL> select ai narrate how many customers exist;
 
RESPONSE
------------------------------------------------------
There are a total of 55,500 customers in the database.
 
SQL> select ai chat how many customers exist;
 
RESPONSE
--------------------------------------------------------------------------------
It is impossible to determine the exact number of customers that exist as it con
stantly changes due to various factors such as population growth, new businesses
, and customer turnover. Additionally, the term "customer" can refer to individu
als, businesses, or organizations, making it difficult to provide a specific num
ber.


SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.

例: OCI生成AIを使用したAIの選択

これらの例は、OCI APIキーまたはリソース・プリンシパルを使用してOCI生成AIにアクセスし、AIプロファイルを作成し、OCI生成AI LLMを使用して自然言語プロンプトまたはチャットからSQLを生成、実行および説明する方法を示しています。

ノート

model_nameパラメータを指定しない場合、OCI生成AIは、AIプロバイダおよびLLMの選択の表に従ってデフォルト・モデルを使用します。パラメータについてさらに学習するには、プロファイル属性を参照してください。
-- Create Credential with OCI API key
--
BEGIN                                                                         
  DBMS_CLOUD.CREATE_CREDENTIAL(                                               
    credential_name => 'GENAI_CRED',                                          
    user_ocid       => 'ocid1.user.oc1..aaaa...',
    tenancy_ocid    => 'ocid1.tenancy.oc1..aaaa...',
    private_key     => '<your_api_key>',
    fingerprint     => '<your_fingerprint>'      
  );                                                                          
END;                                                                         
/
 
--
-- Create AI profile
--
BEGIN                                                                        
  DBMS_CLOUD_AI.CREATE_PROFILE(                                              
      profile_name =>'GENAI',                                                             
      attributes   =>'{"provider": "oci",                                                                   
        "credential_name": "GENAI_CRED",
		"object_list": [{"owner": "SH", "name": "customers"},                
                            {"owner": "SH", "name": "countries"},                
                            {"owner": "SH", "name": "supplementary_demographics"},
                           {"owner": "SH", "name": "profits"},                  
                           {"owner": "SH", "name": "promotions"},               
                           {"owner": "SH", "name": "products"}]
       }');                                                                  
END;                                                                         
/   
   
PL/SQL procedure successfully completed.
   
--
-- Enable AI profile in current session
--
EXEC DBMS_CLOUD_AI.SET_PROFILE('GENAI');
   
PL/SQL procedure successfully completed.
   
--
-- Get Profile in current session
--
SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"GENAI"
  
--
-- Use AI
--  
SQL> select ai how many customers exist;
Number of Customers
-------------------
              55500

SQL> select ai how many customers in San Francisco are married;
COUNT(DISTINCTC."CUST_ID")
--------------------------
                        28

SQL> select ai showsql how many customers in San Francisco are married;
RESPONSE                                                                                                                                                                                             
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SELECT COUNT(DISTINCT c."CUST_ID")
FROM "SH"."CUSTOMERS" c
JOIN "SH"."COUNTRIES" co ON c."COUNTRY_ID" = co."COUNTRY_ID"
WHERE c."CUST_CITY" = 'San Francisco' AND c."CUST_MARITAL_STATUS" = 'married'

SQL> select ai explainsql how many customers in San Francisco are married;
RESPONSE                                                                                                                                                          
Here is the Oracle SQL query to find the number of customers in San Francisco who are married:
```
SELECT COUNT(*)
FROM "SH"."CUSTOMERS" c
WHERE c."CUST_CITY" = 'San Francisco'
AND c."CUST_MARITAL_STATUS" = 'Married';
```
Explanation:
* We use the `COUNT(*)` aggregate function to count the number of rows that match the conditions.
* We specify the table alias `c` for the `"SH"."CUSTOMERS"` table to make the query more readable.
* We use the `WHERE` clause to filter the rows based on two conditions:
    + `c."CUST_CITY" = 'San Francisco'`: We filter the rows where the customer's city is San Francisco.
    + `c."CUST_MARITAL_STATUS" = 'Married'`: We filter the rows where the customer's marital status is Married.
* The double quotes around the table and column names are used to make the query case-sensitive, as required in Oracle SQL.
Note: The column names and table names are assumed to be case-sensitive, so we enclose them in double quotes. If the column names and table names are not case-sensitive, you can remove the double quotes.
Collapse
 This snippet was truncated for display; see it in full

SQL> select ai narrate how many customers in San Francisco are married;

RESPONSE                                                
--------------------------------------------------------
There are 28 customers in San Francisco who are married.


SQL> select ai chat what is Autonomous Database;

RESPONSE                                                                                                                                                                                                                                                                                                    
An Autonomous Database is a type of database that uses artificial intelligence (AI) and machine learning (ML) to automate many of the administrative and maintenance tasks typically performed by a database administrator (DBA). This allows the database to manage itself, without human intervention, to a large extent.
Autonomous databases are designed to be self-driving, self-securing, and self-repairing, which means they can:
1. **Automate administrative tasks**: Such as provisioning, patching, upgrading, and tuning, which frees up DBAs to focus on higher-level tasks.
2. **Optimize performance**: By automatically adjusting parameters, indexing, and caching to ensure optimal performance and efficiency.
3. **Detect and respond to security threats**: By using AI-powered security tools to identify and respond to potential security threats in real-time.
4. **Heal itself**: By automatically detecting and repairing errors, corruption, or other issues that may arise.
5. **Scale up or down**: To match changing workload demands, without the need for manual intervention.
The benefits of Autonomous Databases include:
1. **Increased efficiency**: By automating routine tasks, DBAs can focus on more strategic activities.
2. **Improved performance**: Autonomous databases can optimize performance in real-time, leading to faster query response times and better overall system performance.
3. **Enhanced security**: AI-powered security tools can detect and respond to threats more quickly and effectively than human administrators.
4. **Reduced costs**: By minimizing the need for manual intervention, Autonomous Databases can help reduce labor costs and improve resource utilization.
5. **Improved reliability**: Autonomous Databases can detect and repair errors more quickly, reducing downtime and improving overall system reliability.
Oracle Autonomous Database is a popular example of an Autonomous Database, which was introduced in 2018. Other vendors, such as Amazon, Microsoft, and Google, also offer Autonomous Database services as part of their cloud offerings.
In summary, Autonomous Databases are designed to be self-managing, self-optimizing, and self-healing, which can lead to improved performance, security, and efficiency, while reducing costs and administrative burdens.

--
--Drop the profile
--
EXEC DBMS_CLOUD_AI.DROP_PROFILE('GENAI');
  
PL/SQL procedure successfully completed.

例: OCI生成AIリソース・プリンシパルを使用したAIの選択

OCI生成AIでリソース・プリンシパルを使用するには、Oracle Cloud Infrastructureテナンシ管理者が生成AIリソースのアクセス権を動的グループに付与する必要があります。動的グループへのアクセスを提供するには、Autonomous Databaseでリソース・プリンシパルを使用するための前提条件の実行を参照してください。

すべての生成AIリソースへのアクセスを取得するために必要なポリシーを設定します。生成AIポリシーの詳細は、生成AIへのアクセスを参照してください。
  • テナンシ全体のすべての生成AIリソースにアクセスするには、次のポリシーを使用します:

    allow group <your-group-name> to manage generative-ai-family in tenancy
  • コンパートメント内のすべての生成AIリソースにアクセスするには、次のポリシーを使用します:

    allow group <your-group-name> to manage generative-ai-family in compartment <your-compartment-name>

管理者として接続し、OCIリソース・プリンシパルを有効にします。パラメータを構成するには、ENABLE_PRINCIPAL_AUTHプロシージャを参照してください。

ノート

modelを指定しない場合、OCI生成AIではmeta.llama-3-70b-instructがデフォルト・モデルとして使用されます。パラメータの詳細は、「プロファイル属性」を参照してください。
-- Connect as Administrator user and enable OCI resource principal.
BEGIN
  DBMS_CLOUD_ADMIN.ENABLE_PRINCIPAL_AUTH(provider  => 'OCI');
END;
/
 
--
-- Create AI profile
--
BEGIN                                                                        
  DBMS_CLOUD_AI.CREATE_PROFILE(                                              
      profile_name =>'GENAI',                                                             
      attributes =>'{"provider": "oci",                                                                   
        "credential_name": "OCI$RESOURCE_PRINCIPAL",
		"object_list": [{"owner": "SH", "name": "customers"},                
                            {"owner": "SH", "name": "countries"},                
                            {"owner": "SH", "name": "supplementary_demographics"},
                           {"owner": "SH", "name": "profits"},                  
                           {"owner": "SH", "name": "promotions"},               
                           {"owner": "SH", "name": "products"}]
       }');                                                                  
END;                                                                         
/
   
PL/SQL procedure successfully completed.
   
--
-- Enable AI profile in current session
--
EXEC DBMS_CLOUD_AI.SET_PROFILE('GENAI');
   
PL/SQL procedure successfully completed.

--
-- Get Profile in current session
--
SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"GENAI"   

--   
-- Use AI
--   
SQL> select ai how many customers exist;
Number of Customers
-------------------
              55500

SQL> select ai how many customers in San Francisco are married;
COUNT(DISTINCTC."CUST_ID")
--------------------------
                        28

SQL> select ai showsql how many customers in San Francisco are married;
RESPONSE                                                                                                                                                                                             
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SELECT COUNT(DISTINCT c."CUST_ID")
FROM "SH"."CUSTOMERS" c
JOIN "SH"."COUNTRIES" co ON c."COUNTRY_ID" = co."COUNTRY_ID"
WHERE c."CUST_CITY" = 'San Francisco' AND c."CUST_MARITAL_STATUS" = 'married'

SQL> select ai explainsql how many customers in San Francisco are married;
RESPONSE                                                                                                                                                          
Here is the Oracle SQL query to find the number of customers in San Francisco who are married:
```
SELECT COUNT(*)
FROM "SH"."CUSTOMERS" c
WHERE c."CUST_CITY" = 'San Francisco'
AND c."CUST_MARITAL_STATUS" = 'Married';
```
Explanation:
* We use the `COUNT(*)` aggregate function to count the number of rows that match the conditions.
* We specify the table alias `c` for the `"SH"."CUSTOMERS"` table to make the query more readable.
* We use the `WHERE` clause to filter the rows based on two conditions:
    + `c."CUST_CITY" = 'San Francisco'`: We filter the rows where the customer's city is San Francisco.
    + `c."CUST_MARITAL_STATUS" = 'Married'`: We filter the rows where the customer's marital status is Married.
* The double quotes around the table and column names are used to make the query case-sensitive, as required in Oracle SQL.
Note: The column names and table names are assumed to be case-sensitive, so we enclose them in double quotes. If the column names and table names are not case-sensitive, you can remove the double quotes.
Collapse
 This snippet was truncated for display; see it in full

SQL> select ai narrate how many customers in San Francisco are married;

RESPONSE                                                
--------------------------------------------------------
There are 28 customers in San Francisco who are married.


SQL> select ai chat what is Autonomous Database;

RESPONSE                                                                                                                                                                                                                                                                                                    
An Autonomous Database is a type of database that uses artificial intelligence (AI) and machine learning (ML) to automate many of the administrative and maintenance tasks typically performed by a database administrator (DBA). This allows the database to manage itself, without human intervention, to a large extent.
Autonomous databases are designed to be self-driving, self-securing, and self-repairing, which means they can:
1. **Automate administrative tasks**: Such as provisioning, patching, upgrading, and tuning, which frees up DBAs to focus on higher-level tasks.
2. **Optimize performance**: By automatically adjusting parameters, indexing, and caching to ensure optimal performance and efficiency.
3. **Detect and respond to security threats**: By using AI-powered security tools to identify and respond to potential security threats in real-time.
4. **Heal itself**: By automatically detecting and repairing errors, corruption, or other issues that may arise.
5. **Scale up or down**: To match changing workload demands, without the need for manual intervention.
The benefits of Autonomous Databases include:
1. **Increased efficiency**: By automating routine tasks, DBAs can focus on more strategic activities.
2. **Improved performance**: Autonomous databases can optimize performance in real-time, leading to faster query response times and better overall system performance.
3. **Enhanced security**: AI-powered security tools can detect and respond to threats more quickly and effectively than human administrators.
4. **Reduced costs**: By minimizing the need for manual intervention, Autonomous Databases can help reduce labor costs and improve resource utilization.
5. **Improved reliability**: Autonomous Databases can detect and repair errors more quickly, reducing downtime and improving overall system reliability.
Oracle Autonomous Database is a popular example of an Autonomous Database, which was introduced in 2018. Other vendors, such as Amazon, Microsoft, and Google, also offer Autonomous Database services as part of their cloud offerings.
In summary, Autonomous Databases are designed to be self-managing, self-optimizing, and self-healing, which can lead to improved performance, security, and efficiency, while reducing costs and administrative burdens.


--
--Drop the profile
--
EXEC DBMS_CLOUD_AI.DROP_PROFILE('GENAI');
  
PL/SQL procedure successfully completed.
例: LLAMAモデルを使用したOCI生成AIを使用したAIの選択

この例では、OCI生成AIからのLLAMAモデルのchat機能を示します。2つのプロンプト(顧客のコメントを分析してセンチメントを把握し、ロッククライミングの概要段落を生成する)によって、モデルの機能が強調されます。

BEGIN                                                                          
	  DBMS_CLOUD.CREATE_CREDENTIAL(                                                
		credential_name => 'GENAI_CRED',                                           
		user_ocid       => 'ocid1.user.oc1..aaa',
		tenancy_ocid    => 'ocid1.tenancy.oc1..aaa',
		private_key     => '<your_api_key>',
		fingerprint     => '<your_fingerprint>'       
	  );                                                                           
	 END;                                                                           
	/
	
	PL/SQL procedure successfully completed.
	
BEGIN                                                                          
	  DBMS_CLOUD_AI.CREATE_PROFILE(                                                
		  profile_name => 'GENAI',
		  attributes   =>'{"provider": "oci",
		    "object_list": [
                        {"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}
                        ]
			"model": "meta.llama-2-70b-chat",
			"oci_runtimetype":"LLAMA", 
            "credential_name": "GENAI_CRED",
            "oci_compartment_id": "ocid1.compartment.oc1..."}');
	END;                                                                           
	/
	
	PL/SQL procedure successfully completed.

--
--Set profile
--
EXEC DBMS_CLOUD_AI.SET_PROFILE('GENAI');
          
	PL/SQL procedure successfully completed.

SQL> set linesize 150                                                               
SQL> SELECT AI chat what is the sentiment of this comment I am not going to waste my time filling up this three page form. Lousy idea;
SQL>  
	RESPONSE
	------------------------------------------------------------------------------------------------------------------------------------------------------
	
	The sentiment of this comment is strongly negative. The user is expressing frustration and annoyance with the idea of filling out a three-page form, an
       d is explicitly stating that they consider it a "lousy idea". The use of the phrase "waste my time" also implies that they feel the task is unnecessary 
       and unproductive. The tone is dismissive and critical. 
	
SQL> SELECT AI chat Write an enthusiastic introductory paragraph on how to get started with rock climbing with Athletes as the target audience;
	RESPONSE
	------------------------------------------------------------------------------------------------------------------------------------------------------
	Rock climbing is an exhilarating and challenging sport that's perfect for athletes looking to push their limits and test their strength, endurance, 
       and mental toughness. Whether you're a seasoned athlete or just starting out, rock climbing offers a unique and rewarding experience that will have 
       you hooked from the very first climb. With its combination of physical and mental challenges, rock climbing is a great way to build strength, improve
       flexibility, and develop problem-solving skills. Plus, with the supportive community of climbers and the breathtaking views from the top of the climb,
       you'll be hooked from the very first climb. So, if you're ready to take on a new challenge and experience the thrill of adventure, then it's time to 
       get started with rock climbing!
デフォルト・モデルでのOCI生成AIの使用

次の例では、デフォルトのOCI生成AIチャット・モデルを使用します。model_nameパラメータを指定しない場合、OCI生成AIは、「AIプロバイダおよびLLMの選択」の表に従ってデフォルト・モデルを使用します。

BEGIN                                                                        
  DBMS_CLOUD_AI.CREATE_PROFILE(                                              
      profile_name => 'OCI_DEFAULT',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}]
                        }');
END;                                                                         
/
チャット・モデルでのOCI生成AIの使用

次の例では、OCI生成AIチャット・モデルとしてcohere.command-r-plus-08-2024を使用します。

BEGIN                                                                        
  DBMS_CLOUD_AI.CREATE_PROFILE(                                              
      profile_name => 'OCI_COHERE_COMMAND_R_PLUS',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}],
                        "model": "cohere.command-r-plus-08-2024"
                       }');
END;
/
チャット・モデル・エンドポイントIDでのOCI生成AIの使用

次の例では、modelのかわりにOCI生成AIチャット・モデルのエンドポイントIDを指定する方法を示します。

BEGIN                                                                        
  DBMS_CLOUD_AI.CREATE_PROFILE(                                              
      profile_name => 'OCI_CHAT_ENDPOINT',
      attributes => '{"provider": "oci",
                      "credential_name": "OCI_CRED",
                      "object_list": [{"owner": "ADB_USER"}],
                      "oci_endpoint_id": "<endpoint_id>",
                      "oci_apiformat": "GENERIC"
                     }');
END;
/
チャット・モデルOCIDでのOCI生成AIの使用

この例では、OCI生成AIチャット・モデルOCIDをmodelとして指定する方法を示します。

BEGIN                                                                               
  DBMS_CLOUD_AI.CREATE_PROFILE(
      profile_name => 'OCI_CHAT_OCID',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}],
                        "model": "<model_ocid>",
                        "oci_apiformat": "COHERE"
                       }');
END;
/
生成モデルでのOCI生成AIの使用

この例では、cohere.commandなどのOCI生成AI生成モデルをmodelとして指定する方法を示します。

BEGIN                                                                           
  DBMS_CLOUD_AI.CREATE_PROFILE(
      profile_name => 'OCI_COHERE_COMMAND',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}],
                        "model": "cohere.command"
                       }');
END;
/ 
生成モデル・エンドポイントIDでのOCI生成AIの使用

この例では、modelのかわりにOCI生成AI生成モデルのエンドポイントIDを使用する方法を示します。

BEGIN                                                                           
  DBMS_CLOUD_AI.CREATE_PROFILE(
      profile_name => 'OCI_GENTEXT_ENDPOINT',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}],
                        "oci_endpoint_id": "<endpoint_id>"
                        "oci_runtimetype": "COHERE"
                       }');
END;
/
生成モデルOCIDでのOCI生成AIの使用

この例では、OCI生成AI生成モデルOCIDをmodelとして指定する方法を示します。

BEGIN                                                                           
  DBMS_CLOUD_AI.CREATE_PROFILE(
      profile_name => 'OCI_GENTEXT_OCID',
      attributes   => '{"provider": "oci",
                        "credential_name": "OCI_CRED",
                        "object_list": [{"owner": "ADB_USER"}],
                        "model": "<model_ocid>"
                        "oci_runtimetype": "LLAMA"
                       }');
END;
/

例: OpenAIを使用したAIの選択

この例では、OpenAIを使用して自然言語プロンプトからSQL文を生成する方法を示します。

ノート

EXECUTE権限およびネットワークACLプロシージャを実行できるのは、DBAのみです。

--Grants EXECUTE privilege to ADB_USER
--
SQL> grant execute on DBMS_CLOUD_AI to ADB_USER;

-- Grant Network ACL for OpenAI endpoint
--
SQL> BEGIN  
     DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
         host => 'api.openai.com',
         ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                             principal_name => 'ADB_USER',
                             principal_type => xs_acl.ptype_db)
     );
    END;
    /
 
PL/SQL procedure successfully completed.
 
--
-- Create Credential for AI provider
--
EXEC
DBMS_CLOUD.CREATE_CREDENTIAL(
CREDENTIAL_NAME   => 'OPENAI_CRED', 
username          =>  'OPENAI', 
password          =>  '<your_api_token>');
 
PL/SQL procedure successfully completed.
 
--
-- Create AI profile
--
BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
  profile_name   => 'OPENAI',
  attributes     =>'{"provider": "openai",                                                                   
        "credential_name": "OPENAI_CRED",                                     
        "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}],
        "conversation": "true"                
       }');                                                                  
     END;                                                                         
     / 
 
PL/SQL procedure successfully completed.
 
--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI');
 
PL/SQL procedure successfully completed.
 
--
-- Get Profile in current session
--
SQL> SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"OPENAI"
 
--
-- Use AI
--
SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> select ai how many customers in San Francisco are married;   
 
MARRIED_CUSTOMERS
-----------------
               18
 
 
SQL> select ai showsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS married_customers_count
FROM SH.CUSTOMERS c
WHERE c.CUST_CITY = 'San Francisco'
  AND c.CUST_MARITAL_STATUS = 'Married'
 

SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.
 
SQL> select ai narrate what are the top 3 customers in San Francisco;
 
RESPONSE
--------------------------------------------------------------------------------
The top 3 customers in San Francisco are:
 
1. Hector Colven - Total amount sold: $52,025.99
2. Milburn Klemm - Total amount sold: $50,842.28
3. Gavin Xie - Total amount sold: $48,677.18
 
 
SQL> select ai chat what is Autonomous Database;
 
RESPONSE
--------------------------------------------------------------------------------
Autonomous Database is a cloud-based database service provided by Oracle. It is designed to automate many of the routine tasks involved in managing a database,
such as patching, tuning, and backups. Autonomous Database uses machine learning and automation to optimize performance, security, and availability, allowing 
users to focus on their applications and data rather than database administration tasks. It offers both Autonomous Transaction Processing (ATP) for 
transactional workloads and Autonomous Data Warehouse (ADW) for analytical workloads. Autonomous Database provides high performance, scalability, and 
reliability, making it an ideal choice for modern cloud-based applications.
 
SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('OPENAI');
 
PL/SQL procedure successfully completed.

例: CohereでAIを選択

この例では、Cohereを使用して自然言語プロンプトからSQL文を生成する方法を示します。

ノート

EXECUTE権限およびネットワークACLプロシージャを実行できるのは、DBAのみです。

--Grants EXECUTE privilege to ADB_USER
--
SQL>GRANT execute on DBMS_CLOUD_AI to ADB_USER;
--
-- Create Credential for AI provider
--
EXEC
DBMS_CLOUD.CREATE_CREDENTIAL(
CREDENTIAL_NAME   => 'COHERE_CRED', 
username          =>  'COHERE', 
password          =>  'your_api_token');
 
PL/SQL procedure successfully completed.
 
--
-- Grant Network ACL for Cohere endpoint
--
SQL> BEGIN  
    DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
         host => 'api.cohere.ai',
         ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                             principal_name => 'ADB_USER',
                             principal_type => xs_acl.ptype_db)
    );
     END;
     /
    /
 
PL/SQL procedure successfully completed.
 
--
-- Create AI profile
--BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
  profile_name   => 'COHERE',
  attributes     =>'{"provider": "cohere",
	 "credential_name": "COHERE_CRED",
        "object_list": [{"owner": "SH", "name": "customers"},
                        {"owner": "SH", "name": "sales"},
                        {"owner": "SH", "name": "products"},
                        {"owner": "SH", "name": "countries"}]
       }');
       END;
       /
 
PL/SQL procedure successfully completed.
 
--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('COHERE');
 
PL/SQL procedure successfully completed.
 
--
-- Get Profile in current session
--
SQL> SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"COHERE"
 
--
-- Use AI
--
SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('COHERE');
 
PL/SQL procedure successfully completed.

例: Azure OpenAI Serviceを使用したAIの選択

次の例では、APIキーを使用してAzure OpenAIサービスへのアクセスを有効にするか、Azure OpenAIサービス・プリンシパルを使用してAIプロファイルを作成し、自然言語プロンプトからSQLを生成する方法を示します。

-- Create Credential for AI integration
--
EXEC
DBMS_CLOUD.CREATE_CREDENTIAL(
CREDENTIAL_NAME   => 'AZURE_CRED', 
username          =>  'AZUREAI', 
password          =>  'your_api_token');
  
PL/SQL procedure successfully completed.
  
--
-- Grant Network ACL for OpenAI endpoint
--SQL> BEGIN 
    DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
         host => '<azure_resource_name>.openai.azure.com',
         ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                             principal_name => 'ADB_USER',
                             principal_type => xs_acl.ptype_db)
       );
       END;
       /
  
PL/SQL procedure successfully completed.
  
--
-- Create AI profile
--
SQL> BEGIN                                                                         
    DBMS_CLOUD_AI.CREATE_PROFILE(                                               
     profile_name=> 'AZUREAI',                                                              
     attributes=> '{"provider": "azure", 
        "azure_resource_name": "<azure_resource_name>",
        "azure_deployment_name": "<azure_deployment_name>"                                                                     
        "credential_name": "AZURE_CRED",                                      
        "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}],
        "conversation": "true"                 
       }');                                                                   
     END;                                                                          
     /
  
PL/SQL procedure successfully completed.
  
--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('AZUREAI');
  
PL/SQL procedure successfully completed.

--
-- Get Profile in current session
--
SQL> SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"AZUREAI"
  
  
--
-- Use AI
--
SQL> select ai how many customers exist;
  
CUSTOMER_COUNT
--------------
         55500
  
SQL> select ai how many customers in San Francisco are married;  
  
MARRIED_CUSTOMERS
-----------------
               18
  
  
SQL> select ai showsql how many customers in San Francisco are married;
  
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS married_customers_count
FROM SH.CUSTOMERS c
WHERE c.CUST_CITY = 'San Francisco'
  AND c.CUST_MARITAL_STATUS = 'Married'
  

SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.
 
     
SQL> select ai narrate what are the top 3 customers in San Francisco;
  
RESPONSE
--------------------------------------------------------------------------------
The top 3 customers in San Francisco are:
  
1. Hector Colven - Total amount sold: $52,025.99
2. Milburn Klemm - Total amount sold: $50,842.28
3. Gavin Xie - Total amount sold: $48,677.18
  
  
SQL> select ai chat what is Autonomous Database;
  
RESPONSE
--------------------------------------------------------------------------------
Autonomous Database is a cloud-based database service provided by Oracle. It is designed to automate many of the routine tasks involved in managing a database,
such as patching, tuning, and backups. Autonomous Database uses machine learning and automation to optimize performance, security, and availability, allowing 
users to focus on their applications and data rather than database administration tasks. It offers both Autonomous Transaction Processing (ATP) for transactional
workloads and Autonomous Data Warehouse (ADW) for analytical workloads. Autonomous Database provides high performance, scalability, and reliability, making it 
an ideal choice for modern cloud-based applications.


SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('AZUREAI');
  
PL/SQL procedure successfully completed.
例: Azure OpenAIサービス・プリンシパルを使用したAIの選択

データベース管理者として接続してAzureサービス・プリンシパル認証へのアクセスを提供し、Select AIを使用するユーザー(ADB_USER)にネットワークACL権限を付与します。Azureリソースへのアクセスを提供するには、Azureサービス・プリンシパルを使用したAzureリソースへのアクセスを参照してください。

ノート

EXECUTE権限およびネットワークACLプロシージャを実行できるのは、DBAユーザーのみです。
-- Connect as ADMIN user and enable Azure service principal authentication.
BEGIN
  DBMS_CLOUD_ADMIN.ENABLE_PRINCIPAL_AUTH(provider  => 'AZURE',
                                         params    => JSON_OBJECT('azure_tenantid' value 'azure_tenantid'));
END;
/
  
-- Copy the consent url from cloud_integrations view and consents the ADB-S application.
SQL> select param_value from CLOUD_INTEGRATIONS where param_name = 'azure_consent_url';
PARAM_VALUE
--------------------------------------------------------------------------------
https://login.microsoftonline.com/<tenant_id>/oauth2/v2.0/authorize?client_id=<client_id>&response_type=code&scope=User.read
  
-- On the Azure OpenAI IAM console, search for the Azure application name and assign the permission to the application.
-- You can get the application name in the cloud_integrations view.
SQL> select param_value from CLOUD_INTEGRATIONS where param_name = 'azure_app_name';
PARAM_VALUE
--------------------------------------------------------------------------------
ADBS_APP_DATABASE_OCID
  
--
-- Grant Network ACL for Azure OpenAI endpoint
--SQL> BEGIN 
    DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
         host => 'azure_resource_name.openai.azure.com',
         ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                             principal_name => 'ADB_USER',
                             principal_type => xs_acl.ptype_db)
       );
       END;
       /
  
PL/SQL procedure successfully completed.
  
--
-- Create AI profile
--SQL> BEGIN                                                                         
    DBMS_CLOUD_AI.CREATE_PROFILE(                                               
      profile_name=>'AZUREAI',                                                              
      attributes=>'{"provider": "azure",                                                  
        "credential_name": "AZURE$PA",                                      
        "object_list": [{"owner": "SH", "name": "customers"},                 
                        {"owner": "SH", "name": "countries"},                 
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                   
                        {"owner": "SH", "name": "promotions"},                
                        {"owner": "SH", "name": "products"}],                 
        "azure_resource_name": "<azure_resource_name>",                              
        "azure_deployment_name": "<azure_deployment_name>"                  
       }');                                                                   
     END;                                                                          
     /
  
PL/SQL procedure successfully completed.
  
--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('AZUREAI');
  
PL/SQL procedure successfully completed.
  
--
-- Get Profile in current session
--
SQL> SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"AZUREAI"  

--
-- Use AI
--
SQL> select ai how many customers exist;
  
CUSTOMER_COUNT
--------------
         55500
  
SQL> select ai how many customers in San Francisco are married;  
  
MARRIED_CUSTOMERS
-----------------
               18
  
 
SQL> select ai showsql how many customers in San Francisco are married;
  
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS married_customers_count
FROM SH.CUSTOMERS c
WHERE c.CUST_CITY = 'San Francisco'
  AND c.CUST_MARITAL_STATUS = 'Married'
  

SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.
  
SQL> select ai narrate what are the top 3 customers in San Francisco;
  
RESPONSE
--------------------------------------------------------------------------------
The top 3 customers in San Francisco are:
  
1. Hector Colven - Total amount sold: $52,025.99
2. Milburn Klemm - Total amount sold: $50,842.28
3. Gavin Xie - Total amount sold: $48,677.18
  
  
SQL> select ai chat what is Autonomous Database;
  
RESPONSE
--------------------------------------------------------------------------------
Autonomous Database is a cloud-based database service provided by Oracle. It is designed to automate many of the routine tasks involved in managing a database,
such as patching, tuning, and backups. Autonomous Database uses machine learning and automation to optimize performance, security, and availability, allowing us
ers to focus on their applications and data rather than database administration tasks. It offers both Autonomous Transaction Processing (ATP) for transactional
workloads and Autonomous Data Warehouse (ADW) for analytical workloads. Autonomous Database provides high performance, scalability, and reliability, making it 
an ideal choice for modern cloud-based applications.
 
SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('AZUREAI');
  
PL/SQL procedure successfully completed.

例: GoogleでAIを選択

この例では、Googleを使用して、Google Gemini LLMを使用して自然言語プロンプトまたはチャットからSQLを生成、実行および説明する方法を示します。

次の例は、GoogleをAIプロバイダとして使用する方法を示しています。この例では、Google API署名キーを使用してネットワーク・アクセスを提供し、AIプロファイルを作成し、Select AIアクションを使用して自然言語プロンプトおよびチャット・レスポンスからSQL問合せを生成する方法を示します。

--Grants EXECUTE privilege to ADB_USER
--
SQL> grant EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--
-- Create Credential for AI provider
--
SQL> BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'GOOGLE_CRED',
        username    => 'GOOGLE',
        password    => '<your_api_key>'
      );
     END;
    /
 
PL/SQL procedure successfully completed.

--
-- Grant Network ACL for Google endpoint
--
SQL>
SQL> BEGIN
      DBMS_NETWORK_ACL_ADB_USER.APPEND_HOST_ACE(
        host => 'generativelanguage.googleapis.com',
        ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                    principal_name => 'ADB_USER',
                    principal_type => xs_acl.ptype_db)
       );
     END;
    /
 
PL/SQL procedure successfully completed.

--
-- Create AI profile 
--
SQL> BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
        profile_name =>'GOOGLE',
        attributes   =>'{"provider": "google",
          "credential_name": "GOOGLE_CRED",
          "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}]
         }');
     END;
   /
 
PL/SQL procedure successfully completed.

--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('GOOGLE');
 
PL/SQL procedure successfully completed.
 
--
-- Use AI
--   
SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> select ai how many customers in San Francisco are married;   
 
MARRIED_CUSTOMERS
-----------------
               18
 
 
SQL> select ai showsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS married_customers_count
FROM SH.CUSTOMERS c
WHERE c.CUST_CITY = 'San Francisco'
  AND c.CUST_MARITAL_STATUS = 'Married'
 

SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.    
 
SQL> select ai narrate what are the top 3 customers in San Francisco;
 
RESPONSE
--------------------------------------------------------------------------------
The top 3 customers in San Francisco are:
 
1. Hector Colven - Total amount sold: $52,025.99
2. Milburn Klemm - Total amount sold: $50,842.28
3. Gavin Xie - Total amount sold: $48,677.18
 
 
SQL> select ai chat what is Autonomous Database;
 
RESPONSE
--------------------------------------------------------------------------------
Autonomous Database is a cloud-based database service provided by Oracle. It is designed to automate many of the routine tasks involved in managing a database,
such as patching, tuning, and backups. Autonomous Database uses machine learning and automation to optimize performance, security, and availability, allowing 
users to focus on their applications and data rather than database administration tasks. It offers both Autonomous Transaction Processing (ATP) for transactional
workloads and Autonomous Data Warehouse (ADW) for analytical workloads. Autonomous Database provides high performance, scalability, and reliability, making it 
an ideal choice for modern cloud-based applications.

--
--Drop the profile
--
EXEC DBMS_CLOUD_AI.DROP_PROFILE('GOOGLE');
  
PL/SQL procedure successfully completed.                                                                           

例: 人類学によるAIの選択

この例では、Anthropicを使用して、Anthropic Claude LLMを使用して自然言語プロンプトまたはチャットからSQLを生成、実行および説明する方法を示します。

次の例は、AIプロバイダとしてのAnthropicの使用を示しています。この例では、Anthropic API署名キーを使用してネットワーク・アクセスを提供し、AIプロファイルを作成し、Select AIアクションを使用して、Anthropic Claude LLMを使用して自然言語プロンプトおよびチャットからSQL問合せを生成する方法を示します。

プロファイル属性を指定するには、「プロファイル属性」を参照してください。

--Grant EXECUTE privilege to ADB_USER

SQL>GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--
-- Create Credential for AI provider
--

SQL>BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'ANTHROPIC_CRED',
        username    => 'ANTHROPIC',
        password    => '<your api key>'
      );
    END;
     /
 
PL/SQL procedure successfully completed.
 

--
-- Grant Network ACL for Anthropic endpoint
--
SQL>BEGIN
      DBMS_NETWORK_ACL_ADB_USER.APPEND_HOST_ACE(
        host => 'api.anthropic.com',
        ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                    principal_name => 'ADB_USER',
                    principal_type => xs_acl.ptype_db)
       );
     END;
    /
 
PL/SQL procedure successfully completed.
 
--
-- Create AI profile 
--
SQL>BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
        profile_name =>'ANTHROPIC',
        attributes   =>'{"provider": "anthropic",
          "credential_name": "ANTHROPIC_CRED",
          "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}]
         }');
    END;
     /
 
PL/SQL procedure successfully completed.
 
--
-- Enable AI profile in current session
--
SQL>EXEC DBMS_CLOUD_AI.SET_PROFILE('ANTHROPIC');
 
PL/SQL procedure successfully completed.
 
--
-- Use AI
--
SQL> select ai how many customers exist;
 
CUSTOMER_COUNT
--------------
         55500
 
SQL> select ai how many customers in San Francisco are married;   
 
MARRIED_CUSTOMERS
-----------------
               18
 
 
SQL> select ai showsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS married_customers_count
FROM SH.CUSTOMERS c
WHERE c.CUST_CITY = 'San Francisco'
  AND c.CUST_MARITAL_STATUS = 'Married'
 

SQL> select ai explainsql how many customers in San Francisco are married;
 
RESPONSE
--------------------------------------------------------------------------------
SELECT COUNT(*) AS customer_count
FROM SH.CUSTOMERS AS c
WHERE c.CUST_STATE_PROVINCE = 'San Francisco' AND c.CUST_MARITAL_STATUS = 'Married';
 
Explanation:
- We use the 'SH' table alias for the 'CUSTOMERS' table for better readability.
- The query uses the 'COUNT(*)' function to count the number of rows that match the given conditions.
- The 'WHERE' clause is used to filter the results:
  - 'c.CUST_STATE_PROVINCE = 'San Francisco'' filters customers who have 'San Francisco' as their state or province.
  - 'c.CUST_MARITAL_STATUS = 'Married'' filters customers who have 'Married' as their marital status.
The result of this query will give you the count of customers in San Francisco who are married, using the column alias 'customer_count' for the result.
 
Remember to adjust the table and column names based on your actual schema if they differ from the example.
 
Feel free to ask if you have more questions related to SQL or database in general.
 
SQL> select ai narrate what are the top 3 customers in San Francisco;
 
RESPONSE
--------------------------------------------------------------------------------
The top 3 customers in San Francisco are:
 
1. Hector Colven - Total amount sold: $52,025.99
2. Milburn Klemm - Total amount sold: $50,842.28
3. Gavin Xie - Total amount sold: $48,677.18
 
 
SQL> select ai chat what is Autonomous Database;
 
RESPONSE
--------------------------------------------------------------------------------
Autonomous Database is a cloud-based database service provided by Oracle. It is designed to automate many of the routine tasks involved in managing a database,
such as patching, tuning, and backups. Autonomous Database uses machine learning and automation to optimize performance, security, and availability, allowing 
users to focus on their applications and data rather than database administration tasks. It offers both Autonomous Transaction Processing (ATP) for transactional
workloads and Autonomous Data Warehouse (ADW) for analytical workloads. Autonomous Database provides high performance, scalability, and reliability, making it 
an ideal choice for modern cloud-based applications.


--
--Drop the profile
--
EXEC DBMS_CLOUD_AI.DROP_PROFILE('ANTHROPIC');
  
PL/SQL procedure successfully completed.

例: Hugging Faceを使用したAIの選択

この例では、Hugging Faceを使用して、Hugging Face LLMを使用して自然言語プロンプトまたはチャットからSQLを生成、実行および説明する方法を示します。

次の例は、AIプロバイダとしてのHugging Faceの使用を示しています。この例では、Hugging Face API署名キーを使用してネットワーク・アクセスを提供し、AIプロファイルを作成し、Select AIアクションを使用して自然言語プロンプトからSQL問合せを生成し、Hugging Face LLMを使用してチャットする方法を示します。

--Grant EXECUTE privilege to ADB_USER

SQL>GRANT EXECUTE on DBMS_CLOUD_AI to ADB_USER; 

--
-- Create Credential for AI provider
--
SQL>BEGIN
      DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'HF_CRED',
        username    => 'HF',
        password    => '<your_api_key>'
      );
    END;
     /
 
PL/SQL procedure successfully completed.
 
--
-- Grant Network ACL for Hugging Face endpoint
--
SQL>BEGIN
      DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
        host => 'api-inference.huggingface.co',
        ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                    principal_name => 'ADB_USER',
                    principal_type => xs_acl.ptype_db)
       );
    END;
     /
 
PL/SQL procedure successfully completed.
 


--
-- Create AI profile 
--
SQL>BEGIN
      DBMS_CLOUD_AI.CREATE_PROFILE(
        profile_name =>'HF',
        attributes   =>'{"provider": "huggingface",
          "credential_name": "HF_CRED",
          "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}],
           "model" : "Qwen/Qwen2.5-72B-Instruct"
         }');
    END;
     /
 
 
PL/SQL procedure successfully completed.


--
-- Enable AI profile in current session
--
SQL>EXEC DBMS_CLOUD_AI.SET_PROFILE('HF');

PL/SQL procedure successfully completed.
 
--
-- Use AI
--SQL> select ai how many customers exist;

Customer_Count
--------------
         55500

SQL> select ai how many customers in San Francisco are married;

Married_Customers
-----------------
               46

SQL> select ai showsql how many customers in San Francisco are married;

RESPONSE                                                    
------------------------------------------------------------
SELECT COUNT("CUST_ID") AS "Married_Customers"
FROM "SH"."CUSTOMERS" "C"
WHERE "CUST_CITY" = 'San Francisco' AND "CUST_MARITAL_STATUS
" = 'Married'

SQL> select ai explainsql how many customers in San Francisco are married;

RESPONSE                                                    
------------------------------------------------------------
To answer the question "How many customers in San Francisco are married?", we need to query the "SH"."CUSTOMERS" table and filter the results based on the city and marital status. 
We will use table aliases to make the query more readable and ensure that the string comparisons follow the specified rules.

Here is the Oracle SQL query:

```sql
SELECT COUNT("CUST_ID") AS "Married_Customers_in_San_Francisco"
FROM "SH"."CUSTOMERS" c
WHERE c."CUST_CITY" = 'San Francisco' -- Case insensitive comparison
  AND UPPER(c."CUST_MARITAL_STATUS") = UPPER('Married'); -- 
Case insensitive comparison
```

### Explanation:

1. **Table Alias**:

RESPONSE                                                    
------------------------------------------------------------
   - We use the alias `c` for the "SH"."CUSTOMERS" table to make the query more readable.

2. **Column Selection**:
   - We select the count of "CUST_ID" to get the number of customers who meet the criteria. We alias this count as "Married_Customers_in_San_Francisco" for clarity.

3. **WHERE Clause**:
   - **City Filter**: `c."CUST_CITY" = 'San Francisco'`
     - Since 'San Francisco' is not in double quotes, we use a case-insensitive comparison.
   - **Marital Status Filter**: `UPPER(c."CUST_MARITAL_STATUS") = UPPER('Married')`
     - Since 'Married' is not in double quotes, we use a case-insensitive comparison by applying the `UPPER` function to both sides of the comparison.

This query will return the number of customers in San Francisco who are married.



SQL> select ai narrate what are the top 3 customers in San Francisco;

RESPONSE                                                    
------------------------------------------------------------
The top 3 customers in San Francisco are:

- Hector Colven, with a customer ID of 8866.
- Milburn Klemm, with a customer ID of 1944.
- Gavin Xie, with a customer ID of 2579.

These customers have the highest total sales among all customers in San Francisco.


SQL> select ai chat what is Autonomous Database;

RESPONSE                                                    
------------------------------------------------------------
An Autonomous Database is a type of database management system that uses artificial intelligence (AI) and machine learning (ML) to automate many of the routine tasks typically performed by database administrators (DBAs). These tasks include provisioning, patching, backups, tuning, and security. The goal of an autonomous database is to reduce the need for human intervention, minimize errors, and optimize performance,thereby allowing organizations to focus on more strategic activities.

### Key Features of Autonomous Databases:

RESPONSE                                                    
------------------------------------------------------------
1. **Automated Provisioning**: The database can be set up and configured automatically, reducing the time and effort required to get it up and running.
2. **Self-Patching and Updates**: The database automatically applies security patches and updates without downtime, ensuring that the system remains secure and up-to-date.
3. **Self-Tuning**: The database continuously monitors its performance and adjusts settings to optimize query execution and resource utilization.
4. **Self-Backup and Recovery**: Automated backup and recovery processes ensure that data is protected and can be restored quickly in the event of a failure.
5. **Security**: Advanced security features, including threat detection and response, are built into the database to protect against cyber threats.
6. **Scalability**: The database can automatically scale resources up or down based on demand, ensuring optimal performance and cost efficiency.
7. **Monitoring and Diagnostics**: Real-time monitoring and diagnostics help identify and resolve issues before they impact performance.


RESPONSE                                                    
------------------------------------------------------------
### Benefits of Autonomous Databases:
- **Reduced Operational Costs**: By automating routine tasks, the need for dedicated DBAs is reduced, lowering operational costs.
- **Improved Reliability**: Automated processes reduce the risk of human error, leading to more reliable and consistent performance.
- **Enhanced Security**: Continuous monitoring and automated security measures help protect against threats.
- **Faster Time to Market**: Automated provisioning and tuning allow applications to be deployed more quickly.

RESPONSE                                                    
------------------------------------------------------------
- **Scalability and Flexibility**: The ability to scale resources automatically ensures that the database can handle varying workloads efficiently.

### Use Cases:
- **Cloud Applications**: Autonomous databases are particularly useful in cloud environments where scalability and reliability are critical.
- **Data Warehousing**: They can handle large volumes of data and complex queries, making them ideal for data warehousing and analytics.

RESPONSE                                                    
------------------------------------------------------------
- **IoT and Real-Time Data Processing**: They can process and analyze real-time data from IoT devices efficiently.
- **E-commerce**: They can handle high transaction volumes and ensure fast response times for online shopping platforms.


### Examples of Autonomous Databases:
- **Oracle Autonomous Database**: One of the first and most well-known autonomous databases, offering both transactional
 and data warehousing capabilities.
- **Amazon Aurora**: A managed relational database service that includes automated scaling, patching, and backups.
- **Microsoft Azure SQL Database Managed Instance**: Provides a high level of automation and management for SQL Server databases in the cloud.
- **Google Cloud Spanner**: A globally distributed, horizontally scalable relational database that is highly available and consistent.

Autonomous databases represent a significant advancement in database technology, offering organizations a more efficient, secure, and cost-effective way to manage their data.

SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('HF');
 
PL/SQL procedure successfully completed.

例: 選択AIでの会話の有効化

次の例では、Select AIでの会話の有効化を説明します。

ノート

EXECUTE権限およびネットワークACLプロシージャを実行できるのは、DBAのみです。

AIプロファイルを作成します。プロファイルでconversation属性をtrueに設定します。このアクションには、スキーマ・メタデータを含む可能性のある以前の相互作用またはプロンプトからのコンテンツが含まれ、プロファイルを設定します。プロファイルを有効にすると、データとの会話を開始できます。自然言語を使用して質問し、必要に応じてフォローアップします。


--Grants EXECUTE privilege to ADB_USER
--
SQL> grant execute on DBMS_CLOUD_AI to ADB_USER;

-- Grant Network ACL for OpenAI endpoint
--
SQL> BEGIN  
     DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
         host => 'api.openai.com',
         ace  => xs$ace_type(privilege_list => xs$name_list('http'),
                             principal_name => 'ADB_USER',
                             principal_type => xs_acl.ptype_db)
     );
    END;
    /
 
PL/SQL procedure successfully completed.
 
--
-- Create Credential for AI provider
--
EXEC
DBMS_CLOUD.CREATE_CREDENTIAL(
CREDENTIAL_NAME   => 'OPENAI_CRED', 
username          =>  'OPENAI', 
password          =>  '<your_api_token>');
 
PL/SQL procedure successfully completed.
 
--
-- Create AI profile
--
BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
  profile_name   => 'OPENAI',
  attributes     =>'{"provider": "openai",                                                                   
        "credential_name": "OPENAI_CRED",                                     
        "object_list": [{"owner": "SH", "name": "customers"},                
                        {"owner": "SH", "name": "countries"},                
                        {"owner": "SH", "name": "supplementary_demographics"},
                        {"owner": "SH", "name": "profits"},                  
                        {"owner": "SH", "name": "promotions"},               
                        {"owner": "SH", "name": "products"}],
        "conversation": "true"                
       }');                                                                  
     END;                                                                         
     / 
 
PL/SQL procedure successfully completed.
 
--
-- Enable AI profile in current session
--
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI');
 
PL/SQL procedure successfully completed.
 
--
-- Get Profile in current session
--
SQL> SELECT DBMS_CLOUD_AI.get_profile() from dual;
 
DBMS_CLOUD_AI.GET_PROFILE()
--------------------------------------------------------------------------------
"OPENAI"
 
--
-- Use AI
--
what are the total number of customers;
 
CUSTOMER_COUNT
--------------
         55500
 
break out count of customers by country;   
 
RESPONSE
-----------------
COUNTRY_NAME 			CUSTOMER_COUNT
Italy 				7780
Brazil 				832
Japan 				624
United Kingdom 			7557
Germany 			8173
United States of America 	18520
France 				3833
Canada 				2010
Spain 				2039
China 				712
Singapore 			597
New Zealand 			244
Poland 	708
Australia 			831
Argentina 			403
Denmark 			383
South Africa 			88
Saudi Arabia 			75
Turkey 				91

  
what age group is most common;
 
RESPONSE
--------------------------------------------------------------------------------
AGE_GROUP 	CUSTOMER_COUNT
65+ 		28226
 
select ai keep the top 5 customers and their country by their purchases and include a rank in the result;
 
RESPONSE
--------------------------------------------------------------------------------
RANK 	CUSTOMER_NAME 		COUNTRY 	PURCHASES
1 	Abigail Ruddy 		Japan 		276
2 	Abigail Ruddy 		Italy 		168
3 	Abigail Ruddy 		Japan 		74
3 	Abner Robbinette 	Germany 	74
5 	Abner Everett 		France 		68
 
 
SQL> EXEC DBMS_CLOUD_AI.DROP_PROFILE('OPENAI');
 
PL/SQL procedure successfully completed.

例: RAGでのSelect AIの設定および使用

この例では、Oracle Autonomous Databaseを使用してOCI生成AIベクトル・ストア・クラウド・サービスをOpenAIと統合するための資格証明の設定、ネットワーク・アクセスの構成およびベクトル索引の作成を順を追って説明します。

この設定は、ベクトル索引を使用してLLMレスポンスを拡張するAIプロファイルの作成で終わります。最後に、この例では、指定されたベクトル・データベースの情報を使用して拡張されたレスポンスを返す「AIの選択」narrateアクションを使用します。

次の例は、Oracle 23aiでのベクトル索引の構築および問合せを示しています。

SQL> -- Create the OpenAI credential
SQL> BEGIN
  2    DBMS_CLOUD.CREATE_CREDENTIAL(
  3      credential_name => 'OPENAI_CRED',
  4      username => 'OPENAI_CRED',
  5      password => '<your_api_key>'
  6    );
  7  END;
  8  /

PL/SQL procedure successfully completed.

SQL> 
SQL> -- Append the OpenAI endpoint
SQL> BEGIN
  2      DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
  3           host => 'api.openai.com',
  4           ace  => xs$ace_type(privilege_list => xs$name_list('http'),
  5                   principal_name => 'ADMIN',
  6                   principal_type => xs_acl.ptype_db)
  7     );
  8  END;
  9  /

PL/SQL procedure successfully completed.

 SQL> 
SQL> -- Create the object store credential
SQL> BEGIN
  2    DBMS_CLOUD.CREATE_CREDENTIAL(
  3      credential_name => 'OCI_CRED',
  4      username => '<your_username>',
  5      password => '<OCI_profile_password>'
  6    );
  7  END;
  8  /

PL/SQL procedure successfully completed.

SQL> -- Create the profile with the vector index.
SQL> BEGIN
  2    DBMS_CLOUD_AI.CREATE_PROFILE(
  3        profile_name =>'OPENAI_ORACLE',
  4        attributes   =>'{"provider": "openai",
  5          "credential_name": "OPENAI_CRED",
  6          "vector_index_name": "MY_INDEX",
  7          "temperature": 0.2,
  8          "max_tokens": 4096,
  9          "model": "gpt-3.5-turbo-1106"
 10         }');
 11  end;
 12  /

PL/SQL procedure successfully completed.

 
SQL> -- Set profile
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI_ORACLE');

PL/SQL procedure successfully completed.                                            
 
SQL> -- create a vector index with the vector store name, object store location and
SQL> -- object store credential
SQL> BEGIN
       DBMS_CLOUD_AI.CREATE_VECTOR_INDEX(
         index_name  => 'MY_INDEX',
         attributes  => '{"vector_db_provider": "oracle",
                          "location": "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/my_namespace/my_bucket/my_data_folder",
                          "object_storage_credential_name": "OCI_CRED",
                          "profile_name": "OPENAI_ORACLE",
                          "vector_dimension": 1536,
                          "vector_distance_metric": "cosine",
                          "chunk_overlap":128,
                          "chunk_size":1024
      }');
     END;
     /
PL/SQL procedure successfully completed.  
                                                                                
SQL> -- After the vector index is populated, we can now query the index.




SQL> -- Set profile
SQL> EXEC DBMS_CLOUD_AI.SET_PROFILE('OPENAI_ORACLE');

PL/SQL procedure successfully completed.

SQL> -- Select AI answers the question with the knowledge available in the vector database.
SQL> set pages 1000
SQL> set linesize 150
SQL> select AI narrate how can I deploy an oracle machine learning model;
RESPONSE                                                  
To deploy an Oracle Machine Learning model, you would first build your model within the Oracle database. Once your in-database models are built, they become immediately available for use, for instance, through a SQL query using the prediction operators built into the SQL language. 

The model scoring, like model building, occurs directly in the database, eliminating the need for a separate engine or environment within which the model and corresponding algorithm code operate. You can also use models from a different schema (user account) if the appropriate permissions are in place.

Sources:
  - Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt (https://objectstorage.../v1/my_namespace/my_bucket/my_data_folder/Manage-your-models-with-Oracle-Machine-Learning-on-Autonomous-Database.txt)
  - Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-Database-Machine-Learning-and-APEX.txt (https://objectstorage.../v1/my_namespace/my_bucket/my_data_folder/Develop-and-deploy-machine-learning-models-using-Oracle-Autonomous-Database-Machine-Learning-and-APEX.txt)

例: 表および列コメントを使用したSQL問合せ生成の改善

この例では、データベース表および列のコメントによって、自然言語プロンプトからのSQL問合せの生成がどのように改善されるかを示します。

この例では、Azure OpenAI ServiceがAIプロバイダとして機能します。DBMS_CLOUD_AI.CREATE_PROFILEファンクションの"comments":"true"パラメータは、コメントがSQL生成のモデルに渡されるかどうかを決定します。
-- Adding comments to table 1, table 2, and table 3. Table 1 has 3 columns, table 2 has 7 columns, table 3 has 2 columns.

-- TABLE1
COMMENT ON TABLE table1 IS 'Contains movies, movie titles and the year it was released';
COMMENT ON COLUMN table1.c1 IS 'movie ids. Use this column to join to other tables';
COMMENT ON COLUMN table1.c2 IS 'movie titles';
COMMENT ON COLUMN table1.c3 IS 'year the movie was released';
-- TABLE2
COMMENT ON TABLE table2 IS 'transactions for movie views - also known as streams';
COMMENT ON COLUMN table2.c1 IS 'day the movie was streamed';
COMMENT ON COLUMN table2.c2 IS 'genre ids. Use this column to join to other tables';
COMMENT ON COLUMN table2.c3 IS 'movie ids. Use this column to join to other tables';
COMMENT ON COLUMN table2.c4 IS 'customer ids. Use this column to join to other tables';
COMMENT ON COLUMN table2.c5 IS 'device used to stream, watch or view the movie';
COMMENT ON COLUMN table2.c6 IS 'sales from the movie';
COMMENT ON COLUMN table2.c7 IS 'number of views, watched, streamed';

-- TABLE3
COMMENT ON TABLE table3 IS 'Contains the genres';
COMMENT ON COLUMN table3.c1 IS 'genre id. use this column to join to other tables';
COMMENT ON COLUMN table3.c2 IS 'name of the genre';


BEGIN
  DBMS_CLOUD_AI.CREATE_PROFILE(
    profile_name => 'myprofile',
    attributes =>       
        '{"provider": "azure",
          "azure_resource_name": "my_resource",                    
          "azure_deployment_name": "my_deployment",
          "credential_name": "my_credential",
          "comments":"true", 
          "object_list": [
            {"owner": "moviestream", "name": "table1"},
            {"owner": "moviestream", "name": "table2"},
            {"owner": " moviestream", "name": "table3"}             
          ]          
          }'
    );

    DBMS_CLOUD_AI.SET_PROFILE(
        profile_name => 'myprofile'
    );

END;
/

--Prompts
select ai what are our total views;
RESPONSE
-------------------------------------------------
TOTAL_VIEWS
-----------
   97890562

select ai showsql what are our total views;

RESPONSE                                                                 
-------------------------------------------------------------------------
SELECT SUM(QUANTITY_SOLD) AS total_views
FROM "moviestream"."table"

select ai what are our total views broken out by device;

DEVICE                     TOTAL_VIEWS
-------------------------- -----------
mac                           14719238
iphone                        20793516
ipad                          15890590
pc                            14715169
galaxy                        10587343
pixel                         10593551
lenovo                         5294239
fire                           5296916

8 rows selected. 

select ai showsql what are our total views broken out by device;

RESPONSE                                                                               
---------------------------------------------------------------------------------------
SELECT DEVICE, COUNT(*) AS TOTAL_VIEWS
FROM "moviestream"."table"
GROUP BY DEVICE

例: 合成データの生成

この例では、実データの特性と分布を模倣した合成データを生成する方法を探ります。

次の例では、スキーマにいくつかの表を作成し、AIプロバイダとしてOCI生成AIを使用してAIプロファイルを作成し、DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA関数を使用してそれらの表にデータを合成し、Select AIを使用して自然言語プロンプトに対して問合せまたはレスポンスを生成する方法を示します。

--Create tables or use cloned tables

CREATE TABLE ADB_USER.Director (
    director_id     INT PRIMARY KEY,
    name            VARCHAR(100)
);
CREATE TABLE ADB_USER.Movie (
    movie_id        INT PRIMARY KEY,
    title           VARCHAR(100),
    release_date    DATE,
    genre           VARCHAR(50),
    director_id     INT,
    FOREIGN KEY (director_id) REFERENCES ADB_USER.Director(director_id)
);
CREATE TABLE ADB_USER.Actor (
    actor_id        INT PRIMARY KEY,
    name            VARCHAR(100)
);
CREATE TABLE ADB_USER.Movie_Actor (
    movie_id        INT,
    actor_id        INT,
    PRIMARY KEY (movie_id, actor_id),
    FOREIGN KEY (movie_id) REFERENCES ADB_USER.Movie(movie_id),
    FOREIGN KEY (actor_id) REFERENCES ADB_USER.Actor(actor_id)
);

-- Create the GenAI credential
BEGIN                                                                       
  DBMS_CLOUD.create_credential(                                             
    credential_name => 'GENAI_CRED',                                        
    user_ocid       => 'ocid1.user.oc1....',
    tenancy_ocid    => 'ocid1.tenancy.oc1....',
    private_key     => 'vZ6cO...',
    fingerprint     => '86:7d:...'    
  );                                                                        
END;                                                                       
/
 
-- Create a profile
BEGIN                                                                      
  DBMS_CLOUD_AI.CREATE_PROFILE(                                            
      profile_name =>'GENAI',                                                           
      attributes  =>'{"provider": "oci",                                                                 
        "credential_name": "GENAI_CRED",                                   
        "object_list": [{"owner": "ADB_USER", 
		"oci_compartment_id": "ocid1.compartment.oc1...."}]          
       }');                                                                
END;                                                                       
/
 
 
EXEC DBMS_CLOUD_AI.set_profile('GENAI');

-- Run the API for single table
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_name  => 'Director',
        owner_name   => 'ADB_USER',
        record_count => 5
    );
END;
/
PL/SQL procedure successfully completed.
 
 
-- Query the table to see results
SQL> SELECT * FROM ADB_USER.Director;
 
DIRECTOR_ID NAME
----------- ----------------------------------------------------------------------------------------------------
          1 John Smith
          2 Emily Chen
          3 Michael Brown
          4 Sarah Taylor
          5 David Lee
 
 
-- Or ask select ai to show the results
SQL> select ai how many directors are there;
 
NUMBER_OF_DIRECTORS
-------------------
                  5
例: 複数の表に対する合成データの生成

AIプロバイダ・プロファイルを作成して設定した後、DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATAを使用して複数の表のデータを生成します。「AIの選択」を問い合せたり、使用して自然言語プロンプトに応答できます。

BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_list => '[{"owner": "ADB_USER", "name": "Director","record_count":5},
                         {"owner": "ADB_USER", "name": "Movie_Actor","record_count":5},
                         {"owner": "ADB_USER", "name": "Actor","record_count":10},
                         {"owner": "ADB_USER", "name": "Movie","record_count":5,"user_prompt":"all movies released in 2009"}]'
    );
END;
/
PL/SQL procedure successfully completed.
 
 
-- Query the table to see results
SQL> select * from ADB_USER.Movie;

 MOVIE_ID TITLE                                                     RELEASE_D                            GENRE                                 DIRECTOR_ID	
---------- -------------------------------------------------------- --------- --------------------------------------------------------------- -----------	
         1 The Dark Knight                                           15-JUL-09                              Action                              8	
         2 Inglourious Basterds                                      21-AUG-09                              War                                 3	
         3 Up in the Air                                             04-SEP-09                              Drama                               6	
         4 The Hangover                                              05-JUN-09                              Comedy                              1	
         5 District 9                                                14-AUG-09                              Science Fiction                     10	
	

 
-- Or ask select ai to show the results
SQL> select ai how many actors are there;
 
Number of Actors
----------------
              10
例: サンプル行を使用した合成データ生成のガイド

合成データの生成でAIサービスをガイドするために、表から既存のレコードをランダムに選択できます。たとえば、params引数に{"sample_rows": 5}を追加すると、表からAIプロバイダに5つのサンプル行を送信できます。この例では、Transactions表のサンプル行に基づいて10行追加を生成します。

BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name => 'GENAI',
    object_name  => 'Transactions',
    owner_name   => 'ADB_USER',
    record_count => 10,
    params       => '{"sample_rows":5}'
  );
END;
/
例: ユーザー・プロンプトを使用した合成データ生成のカスタマイズ

user_prompt引数を使用すると、データ生成のための追加のルールまたは要件を指定できます。これは、単一の表に適用することも、複数の表のobject_list引数の一部として適用することもできます。たとえば、DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATAへの次のコールでは、2009年にリリースされたムービーで合成データを生成するようAIに指示します。

-- Definition for the Movie table CREATE TABLE Movie 

CREATE TABLE Movie (
    movie_id        INT PRIMARY KEY,
    title           VARCHAR(100),
    release_date    DATE,
    genre           VARCHAR(50),
    director_id     INT,
    FOREIGN KEY (director_id) REFERENCES Director(director_id)
);
 
 
 
BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name      => 'GENAI',
    object_name       => 'Movie',
    owner_name        => 'ADB_USER',
    record_count      => 10,
    user_prompt       => 'all movies are released in 2009',
    params            => '{"sample_rows":5}'
  );
END;
/
 
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name => 'GENAI',
        object_list => '[{"owner": "ADB_USER", "name": "Director","record_count":5},
                         {"owner": "ADB_USER", "name": "Movie_Actor","record_count":5},
                         {"owner": "ADB_USER", "name": "Actor","record_count":10},
                         {"owner": "ADB_USER", "name": "Movie","record_count":5,"user_prompt":"all movies are released in 2009"}]'
    );
END;
/
例: 表統計を使用した合成データ品質の向上

表に列統計があるか、メタデータを含むデータベースからクローニングされている場合、Select AIはこれらの統計を使用して、元のデータとよく似ているか、または一貫性のあるデータを生成できます。

NUMBER列の場合、統計の上限値と下限値は値の範囲をガイドします。たとえば、元のEMPLOYEES表のSALARY列の範囲が1000から10000の場合、この列の合成データもこの範囲内に収まります。

値がCAWAおよびTXSTATE列など、個別値を持つ列の場合、合成データではこれらの特定の値が使用されます。この機能は、{"table_statistics": true/false}パラメータを使用して管理できます。デフォルトでは、表統計は有効です。

BEGIN
  DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
    profile_name      => 'GENAI',
    object_name       => 'Movie',
    owner_name        => 'ADB_USER',
    record_count      => 10,
    user_prompt => 'all movies released in 2009',
    params            => '{"sample_rows":5,"table_statistics":true}'
  );
END;
/
例: 列コメントを使用したデータ生成のガイド

列コメントが存在する場合、「AIの選択」には、データ生成時にLLMの追加情報を提供するために自動的に含まれます。たとえば、トランザクション表のStatus列のコメントには、successfulfailedpendingcanceledneed manual checkなどの許容値がリストされます。また、コメントを追加して列をさらに説明し、正確なデータを生成するためのより正確な指示やヒントをAIサービスに提供することもできます。デフォルトでは、コメントは無効です。詳細は、オプション・パラメータを参照してください。

-- Use comment on column
COMMENT ON COLUMN Transaction.status IS 'the value for state should either be ''successful'', ''failed'', ''pending'' or ''canceled''';
/
 
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name  => 'GENAI',
        object_name   => 'employees',
        owner_name    => 'ADB_USER',
        record_count  => 10
        params        => '{"comments":true}'
 
    );
END;
/
例: 合成データ生成での一意の値の設定

大量の合成データをLLMで生成する場合、重複する値が発生する可能性があります。これを防ぐには、関連する列に一意制約を設定します。これにより、LLMレスポンスで重複値を持つ行がSelect AIによって無視されます。また、特定の列の値を制限するには、user_promptを使用するか、コメントを追加して、STATE列をCAWAおよびTXに制限するなど、許可される値を指定できます。

-- Use 'user_prompt'
BEGIN
    DBMS_CLOUD_AI.GENERATE_SYNTHETIC_DATA(
        profile_name  => 'GENAI',
        object_name   => 'employees',
        owner_name    => 'ADB_USER',
        user_prompt   => 'the value for state should either be CA, WA, or TX',
        record_count  => 10
    );
END;
/
 
 
-- Use comment on column
COMMENT ON COLUMN EMPLOYEES.state IS 'the value for state should either be CA, WA, or TX'
/
例: パラレル処理による合成データ生成の拡張

実行時間を短縮するために、Select AIは、合成データ生成タスクを、主キーのない表または数値の主キーを持つ表の小さなチャンクに分割します。これらのタスクは並行して実行され、AIプロバイダと対話してデータをより効率的に生成します。Autonomous Databaseサービス・レベルおよびECPUまたはOCPU設定の影響を受けるデータベース内の並列度(DOP)によって、各チャンク・プロセスのレコード数が決まります。通常、タスクを並行して実行すると、パフォーマンスが向上します。特に、多数の表にわたって大量のデータを生成する場合です。合成データ生成のパラレル処理を管理するには、オプションのパラメータとしてpriorityを設定します。オプション・パラメータを参照してください。